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I. Prologue
“Kekulé is dead. Long live Kekulé.”
Indeed. By browsing the recent special issue of

Chemical Reviews devoted to the topic of aromatic-
ity,1 one may obtain an impression that not only is
Kekulé dead, but also the valence bond theory is
dead. Moreover, disappointingly, one may also get the
impression that Clar was never born! Among several
thousand references listed in that issue, excluding
historical remarks, you can count on your fingers how
many times Kekulé and Clar are mentioned. In over
3200 references cited collectively in 18 articles on
aromaticity, books by Clar were cited only eight
times. Yet, it is difficult to look at the contributions
to the discussion of the aromaticity of benzenoid
hydrocarbons, which form the basis for discussion of
aromaticity of non-benzenoid and heterocyclic com-
pounds, without reference to Kekulé and Clar. Are
we forgetting the shoulders on which we stand?2

As we will see, the four persons who made the most
important contributions to our understanding of
aromaticity are August Kekulé, Erik Hückel, Linus
Pauling, and Eric Clar. Of the four, the least appreci-
ated, Eric Clar, was the closest to recognizing the
aromaticity of benzenoid compounds, even though his
work can be characterized as intuitive. It is therefore
regrettable that the pioneering work of Clar on the
clarification of aromaticity has not been considered
by theoretical chemists for more thorough investiga-
tionsas if it does not deserve their attention. There
are few exceptions. Orchin and Jaffé, in their well-
known textbook Symmetry, Orbitals, and Spectra,3
devoted several pages to Clar. They recognized the
merits of the Clar π-sextet, as is evident from the
following quotation (from p 78), in which they draw
attention to the widespread, even in these days,
incorrect representation of benzenoid hydrocarbons:

There is an unfortunate misuse of the practice
of depicting aromatic rings by use of a solid
circle inscribed in a hexagon. In accordance with
Sir Robert Robinson’s original suggestion, the
circle should represent only a sextet of pπ elec-
trons. Accordingly, drawing naphthalene with
two solid circles not only is aberration from the
original suggestion but is misleading as well,
since there are ten and not twelve pπ electrons
in naphthalene. In this example only one of the
two rings should be drawn with a solid circle
inside it, but it is immaterial which ring is
chosen. The choice, when it exists, as to which
of the rings in the polycyclic system should be
shown as possessing sextets (solid circles) is not
completely arbitrary. Eric Clar, Polycyclic Hy-
drocarbons, Academic Press, Vols. 1 and 2, 1969,
makes skillful use of the placement of the sextets
to show chemical and spectral relationships
between aromatic systems. His volumes are
essential references for anyone interested in
chemistry and spectra of aromatic compounds...

This warning, set up over 30 years ago, apparently
fell on deaf ears. A dozen years later, Belloli,4 in an
article entitled “The Misuse of the Circle Notation
to Represent Aromatic Sextets” in the Journal of

Chemical Education, again drew the attention of
chemists to Clar structures, but apparently in vain.
We are raising this issue again here, hoping that
there may be some truth in an old Croatian saying:
“Third time God helps.” There is, this time, some
basis for being optimistic. In a recent contact with
Professor A. T. Balaban, one of the topical editors of
Polycyclic Aromatic Compounds (The Journal of the
International Society for Polycyclic Aromatic Com-
pounds), after raising a complaint that many articles
in this journal misuse the circle notation to represent
aromatic sextets, I was assured that the matter will
be addressed and authors will be instructed to draw
either Clar structures or Kekulé structures for poly-
cyclic benzenoid hydrocarbons but not incorrect struc-
tures with circuits (π-sextets) in adjacent rings. One
of the problems that may have contributed to inertia
in misrepresenting structures of benzenoids is that,
just as is the case with the Kekulé valence structures,
there are many benzenoid hydrocarbons that have
more than one Clar structure. Which one should one
draw? It does not matter much, but it is certainly
better to use any such structure than to use the
incorrect structure in which circles do not represent
π-sextets. It may be beneficial if we could all agree
to select standard structures by following some rules
to reduce the number of alternative graphical rep-
resentations. In the case of Kekulé valence struc-
tures, where we have a similar problem, Orchin and
Jaffé suggest drawing a Kekulé structure, as shown
on the left in Figure 1 for chrysene, “that permits the
maximum number of rings to have the Kekulé struc-
ture (three double bonds). Thus, for example, it is
preferable to draw chrysene as in (a) rather than (b),
since in the former all four rings have Kekulé struc-
tures, but in (b) only three rings are Kekulé and one
is quinoidal.” 3 As we will see later, the Kekulé
valence structure with the maximal number of Kekulé
benzene rings is the valence structure that, in 1927,
Fries5,6 recognized as the most important Kekulé
valence structure. In parallel to the recommendation
of Orchin and Jaffé to draw the most important
Kekulé valence structure to represent benzenoid
hydrocarbons, we suggest here that when more than
one Clar structure is possible (as will be seen later
to be often the case), we select the most important
Clar structure, which has yet to be recognized. We
suspect that this is the Clar structure in which the
maximal number of rings have quinoidal form. This
is the case with the Clar structure shown on the left
in Figure 1, where there are two quinoidal benzene

Figure 1. Clar structures (bottom) and Kekulé structures
(top) of chrysene. The representations on the left are
preferred to those on the right if a single structure is to be
used for display.
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rings, in contrast to the Clar structure on the right
in Figure 1, where there is only one quinoidal
benzene ring. Molecules with symmetry may have
more than one such “most important” Clar structure
that will be symmetry-related. It is an open problem
to establish whether there are two or more sym-
metry-unrelated Clar structures having the same
number of quinoidal rings, in which case additional
criteria may have to be considered to establish the
most important Clar structure. A plausible route for
characterizing such structures is to select the associ-
ated Clar structure that contributes maximally to
molecular resonance energy.

The main “tool” in our approach to aromaticity is
the concept of conjugated circuits that this author
introduced over 25 years ago. As will be argued and
demonstrated in this review, this “tool” is immensely
suitable for the intended job, which includes clas-
sification of polycyclic conjugated hydrocarbons, char-
acterization of aromaticity, and calculation of molec-
ular resonance energy (RE). It will be shown how
polycyclic conjugated hydrocarbons can be discrimi-
nated into those that qualify as “fully aromatic”,
those that are aromatic, and those that are less
aromatic or not aromatic at all. The “theory of
conjugated circuits”, as this model is sometimes
referred to, is quite simple to understand and use,
and one could say it to be elegant, yet it is not
simplistic. Apparently, this model has captured all
the most important structural features of polycyclic
conjugated hydrocarbons that are of interest when
one considers their aromatic characteristics or lack
thereof. One of the reviewers of this paper com-
mented that “(the conjugated circuits) model is more
or less an empirical and parametric one”, which can
be interpreted as a sign of deficiency. However, the
same can be said of many important concepts of
chemistry, starting with van’t Hoff’s tetrahedral
model of the carbon atom, the notion of bond dipoles
of Langeven, and Pauling hybridization and Pauling
bond orders s all very simple concepts but of pro-
found importance for chemistry. Conjugated circuits
may well qualify for a similar distinction, but of
course in a narrow field of chemistry s that of
conjugated polycyclic hydrocarbons.

On the other hand, if a model is simple, empirical,
and parametric, that does not necessarily means that
it has no firm, apparently hidden link to generally
accepted fundamental laws, such as those of quan-
tum chemistry. Just as the opposite may be the case,
a model that is thought to be based on basic axioms
may turn out not to reflect this “deep” connection
with quantum chemistry. It thus was found, mostly
through the work of D. J. Klein,7-10 that the conju-
gated circuits model has a quite firm foundation in
quantum chemical principles, while as we all know,
the Hückel molecular orbital (MO) model that started
as a quantum chemical model turned out to be a
consequence of molecular topology, rather than an
intricate interaction of π-electrons governed by the
Schrödinger equation.

The conjugated circuits model, as will be seen,
offers insight into aromaticity that has been so far
missing, and in that sense in our view it will be found

indispensable. However, it should be kept in mind
that this model, just as is the case with many other
models, has limited applicability. Most chemists are
aware of futile attempts to generalize the Hückel
4n + 2 rule to polycyclic systems s for which it was
not designed! The conjugated circuits model has been
“designed” to discriminate among Kekulé valence
structures, and hence applies wherever Kekulé va-
lence structures play a role. As will be seen, this
includes aromaticity, local aromaticity, molecular
resonance energy, Clar structures, and Clar’s aro-
matic π-sextet.

This article may be found in some way unusual and
non-traditional. First, it approaches the “problem of
aromaticity” from the chemical graph theory point
of view rather than the traditional approaches based
on experimental evidence as the support for the
notion of aromaticity and theoretical approaches
based on molecular orbital (MO) theory or valence
bond (VB) theory. The article challenges non-struc-
tural approaches (both experimental and theoretical)
as contributing to the confusion rather than clarifica-
tion of aromaticity. The presentation is focused on
the aromaticity of benzenoid and non-benzenoid
hydrocarbons, almost “ignoring” 99% or more of the
chemistry involving heteroatoms.

The article is “self-contained” in the sense that the
most important basic concepts and approaches are
fully outlined so as to allow the reader uninterrupted
reading of the main body of the article without
necessarily looking for clarifications elsewhere, in
cited references or source publications. An effort was
made to give credit to those who made important
contributions in this area and to mention alterna-
tives, even if not pursued in detail. Moreover, the
article includes a number of original auxiliary con-
tributions that help to clarify the material. It is hoped
that these contributions will illustrate similarities
and differences between the traditional and the
standard approaches on one side and the graph
theoretical (combinatorial and topological) approaches
on the other side. In order to illustrate better the
nature of graph theoretical methods, many notions
of graph theory are outlined, even if some may be
only marginally related to the central topic of the
review s the aromaticity of conjugated hydrocarbons.

It would be too much to expect that the arguments
presented would be generally accepted and generally
understood. “I have found you an argument; I am not
obliged to find you an understanding.” This was the
answer that Samuel Johnson11 gave after a prolonged
argument with “a pertinacious gentleman” when he
to one of Johnson’s points had responded: “I don’t
understand you, Sir.” Understanding may require
prior knowledge of various details, including various
aspects of theory and experiments, and some indi-
viduals may be better or not so well equipped to fully
understand various subtle points. But there is noth-
ing abnormal about chemical graph theory that any
well-intentioned person could not grasp. In fact,
graph theory is so close to chemical descriptions of
molecules that many may be surprised to find out
how much of chemical graph theory they already
know, without knowing it! However, I have to add a
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word of caution. The opposite also is often the case
with some critics of chemical graph theory. Some of
those who think that they know chemical graph
theory may be surprised to find out how little they
know. As Confucius said over 2500 years ago, “Those
who don’t know that they do not know are dangerous,
avoid them! ”

Apparently, often these days we do not give proper
credit to the originators of important scientific ideas,
except when a contribution relates to historical
details. To mention but a few illustrations: How
many of those who may have daily used Gaussian
programs refer to S. F. Boys,12,13 who initiated ab
initio quantum chemical calculations based on Gauss-
ian functions? How many of those who teach intro-
ductory courses on molecular orbital theory give
credit to F. Hund14-17 and R. Mulliken18-21 (Nobel
Prize for Chemistry in 1966) for initiating MO
calculations? How many of those playing with Hückel
molecular orbitals are aware that it was F. Bloch22,23

who introduced (0,1) matrices (to which the Hückel
Hamiltonian is reduced by suitable scaling) as an
effective Hamiltonian for the interaction of electrons?
How many of those who use principal component
analysis (PCA) have heard of H. Hotelling?24 How
many chemists using X-ray computer software to
report on molecular geometry are aware that it was
J. Karle and H. A. Hauptmann25 (Nobel Prize for
Chemistry 1985) who solved the inverse problem for
X-ray dispersion and made possible the calculation
of atom coordination from X-ray data? How many of
those involved in isomer enumeration and conformer
studies are aware that it was Flavitskii26,27 who made
the first chemical enumeration? Renowned English
mathematician Cayley, who has been often credited
as reporting the first enumeration of isomers, was
the first to consider enumeration of graphs.28 His
paper on enumeration of isomers appeared four years
after Flavitskii published some of his isomer enu-
meration in the same journal.29,30

In order to pay due respect to those who have made
seminal contributions to aromaticity, we have listed
them in Table 1. A longer and more detailed list can
be found in a paper by Balaban, entitled “Is Aroma-
ticity Outmoded?” .31 The first paper on the VB model
is the historical paper by Heitler and London32 which
explained the mystery of the so-called “chemical
forces”, characterized by unusual properties that are
absent in electromagnetic and gravitational forces:
the short range, the direction, and the saturation. As
Heitler and London showed by calculations on the
H2 molecule, these “chemical forces” turned out to be
nothing but interactions of electrons and atomic
nuclei as governed by Coulomb potential and the
Schrödinger equation. Their paper, which opened a
new branch of chemistry, quantum chemistry, de-
fined the VB approach. Browsing through chemical
literature may give a wrong impression that the VB
method is dying, if not already dead. Nothing can be
more incorrect. Valence bond is alive and well, as is
illustrated by numerous publications dealing with
developments of VB theory.7-10,33-35 One is reminded
of the quotation from Mark Twain: “The report of my
death is an exaggeration.”

Pauling and Wheland36 initiated expansion of the
VB method to benzenoids and other organic com-
pounds almost 70 years ago, and although for a while
the VB method was overshadowed by a fast develop-
ment of various MO methodologies, it still remains
a useful alternative approach for characterization of
molecules. In recent years it has even seen a lively
resurgence. Very accurate VB calculations based on
106 and more configurations are quite feasible.37-39

In contrast to various semi-empirical MO schemes,
such as the “extended Hückel” method,40 the Pariser-
Parr-Pople self-consistent field (SCF) MO method,41,42

and modified intermediate neglect of differential
overlap (MINDO) variants reported by Dewar and co-
workers,43-45 which tend to fade away with the
development of ab initio calculations (based on
Gaussian orbitals), this is not the case with various
semi-empirical VB approaches. The reason may be
that interpretations of VB models are more natural
to chemistry, while efforts to digest the abundant
numerical details of a typical MO ab initio calculation
often fail to improve our insight into subtle aspects
of molecular structures. For example, rigorous MO
calculations of the geometry, say, of triphenylene will
undoubtedly give fairly accurate estimates of various
CC bond lengths in this molecule but will not tell us
why the central CC bonds are much longer than the
peripheral CC bonds. To “understand” this, one needs
to construct appropriate bond orders (e.g., in the case
of HMO theory the Coulson bond orders46), often
forgetting that quantities such as bond orders, bond
dipoles, atom-atom and atom-bond polarizabilities,
atomic charges, etc. are non-observable. Dirac, in his
treatise The Principles of Quantum Mechanics,47

defined an observable as a quantity that can be
calculated from the first principles. Thus, any quan-
tity that is computed by not using the total molecular
wave function is non-observable. Such, for example,
are the Kekulé valence structures, the Pauling bond
orders,48 the Clar structures,49,50 and the conjugated
circuits51-53 on one side, and on the other side various
molecular descriptors (the so-called topological in-
dices),54-57 such as the path numbers of Platt,58 the
Wiener index W,59 the Hosoya Z topological index,60

the connectivity index ø,61-67 Balaban’s J index,68,69

etc. All of these quantities have equal legitimacy or
illegitimacy, although some may appear more “fun-
damental” than others (at least in the eyes of some) s
they are at an equal footing.

What keeps various graph theoretical and semi-
empirical VB models alive is that the concepts
involved in these models are expressed by a language
that is commonly understood in chemistry, which
includes such basic structural elements as atoms,
bonds, rings, and various molecular fragments, such
as the bay region or the pharmacophores, which are
of interest in structure-bioactivity studies. In this
article we will focus on aromaticity in hydrocarbons,
and in particular the aromaticity of benzenoid hy-
drocarbons, and will see that there is some theoretical
justification to expect the “fully benzenoid” 6n π-elec-
tron systems of Clar to be the most aromatic poly-
cyclic hydrocarbons. The reason that we have con-
fined our attention to conjugated hydrocarbons is
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that, if we are to better understand aromaticity in a
general case, we ought first to understand the aro-
maticity of hydrocarbons, benzenoid and non-ben-
zenoid. Only after that should we try to embark on
the more complex task of characterizing the degree
of aromaticity of heterocyclic aromatic compounds.
We also believe that, among chemists, there is hardly
disagreement that the “fully benzenoid” 6n π-electron
systems of Clar are the most aromatic benzenoid
hydrocarbons s so they offer a good starting point in
our effort to clarify the concept of aromaticity. We
will address this topic in more detail later.

Chemical graph theory70-85 has also its “strengths”.
This can be seen when considering not only interpre-
tation of some quantum chemical results but also

interpretation of statistical and other data on mol-
ecules. In this article in particular we will see how
graph theoretical concepts, such as the conjugated
circuits, the innate degree of freedom of Kekulé
valence structures, and the Clar structures, can all
be combined to characterize the local and overall
aromaticity of benzenoid hydrocarbons, “fully ben-
zenoid” hydrocarbons, and “fully aromatic” com-
pounds. In addition, we will see that these ap-
proaches that lead to the quantification of Clar’s
π-sextets model can be justified using chemical
arguments.86,87

We will present three independent arguments that
support the notion of the local aromaticity of ben-
zenoid hydrocarbons as advocated by Clar: (1) We

Table 1. Important Contributions to the Evolution of the Notion of Aromaticity

author(s) year work on

M. Faraday 1825 discovery of benzene
A. Kekulé 1865 benzene cyclic formula
J. Dewar 1867 Dewar benzene formula
A. Ladenburg 1869 benzene prizmane formula
A. Claus 1882 benzene Claus formula
J. Thiele 1900 C5H5

-

R. Robinson and T. W. Armitt 1925 aromatic π-sextet
K. Fries 1927 Fries rule
E. Hückel 1931 Hückel molecular orbital theory
E. Hückel 1937 benzene benzvalene formula
W. C. Lothrop 1941 biphenylene synthesis
T. J. Sworski 1948 tridehydro[12]annulene
P. L. Pauson 1951 ferrocene
W. von E. Doering and L. H. Knox 1954 tropylium ion
E. Clar and M. Zander 1958 aromatic π-sextet resurrected
K. Hafner and J. Schneider 1958 aceheptylene derivative
W. E. von Doering and E. A. Matzner 1958 fulvalene
F. Sondheimer and R. Wolovsky 1959 [18]annulene
F. Sondheimer and R. Wolovsky 1959 [24]annulene
S. Winstein 1959 homo-aromaticity
T. J. Katz 1960 cyclooctatetraene dianion
F. Sondheimer, R. Wolovsky, and Y. Gaoni 1960 [30]annulene
F. Sondheimer and Y. Gaoni 1960 [14]annulene
F. Sondheimer and Y. Gaoni 1961 [16]annulene
F. Sondheimer and Y. Gaoni 1961 [20]annulene
E. E. van Tamelen 1963 Dewar benzene synthesis
G. Schröder 1964 bullvalene
E. Vogel 1964 bridged 4n + 2 π-electron systems
E. Heilbronner 1964 Möbius annulene
T. J. Katz 1965 aromatic anions
A. L. Chung and M. J. S. Dewar 1965 anti-aromaticity
W. E. Barth and R. G. Lawton 1966 corannulene
K. E. Wilzhach 1967 benzvalene synthesis
W. H. Okamura and F. Sondheimer 1967 hexadehydro[18]anulene
R. H. Martin and M. J. Marchant 1972 large helicenes
E.Clar and B. A. McAndrew 1972 tetrabenzoperylene
E.Clar and B. A. McAndrew 1972 tetrabenzocoronene
T. J. Katz 1973 prizmane synthesis
D. M. Jerina 1976 bay region
G. Olah, J. S. Staral, and L. A. Paquette 1976 cyclooctatetraene dication
H. A. Staab and F. Diedrich 1978 kekulene
C. F. Wilcox and E. N. Farley 1984 dicycloocta[def:jfk]biphenylene
H. W. Kroto, R. F. Curl, and R. E. Smalley 1985 buckminsterfullerene C60

K. Müllen 1997 giant benzenoids
L. T. Scott 2002 C60 synthesis
K. P. C. Vollhardt 2002 helical [n]phenylenes
A. Vij and K. O. Christe 2002 cyclo-N5

-

P. W. Fowler, R. W. A. Havenith, L. W. Jenneskens,
A. Soncini, and E. Steiner

2002 flattened cyclooctatetraene

J. E. Dahl, S. G. Liu, and R. M. Carlson 2003 poly-adamantanes
E. Nakamura, K. Tahara, Y. Matsuo, and

M. Sawamura
2003 [10]cyclophenacene
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will show that graph theoretically calculated ring
resonance energies in benzenoid hydrocarbons (that
parallel Clar’s notion of the π-aromatic sextet, the
notion of the “fully benzenoid” hydrocarbons, and the
concept of “empty” rings and the migrating sextets)
correlate well with the quantum chemically computed
contributions of individual rings to the molecular
resonance energy (RE). (2) We will see that quantum
chemically computed RE values better agree with the
graph theoretical model in which only the most
important Kekulé valence structures are considered,
rather than considering contributions from conju-
gated circuits from all Kekulé valence. (3) Finally,
we will see how, by extending Clar’s model of
π-aromatic sextet to biphenylene derivatives, by
considering only the Kekulé valence structures of the
“maximal innate degree of freedom”, one can under-
stand the relative stability of bent [n]phenylenes,
which would be predicted to be unstable if the
contributions from conjugated circuits from all Kekulé
valence structures were considered.

II. Introduction
Es gibt keine Kunst, welche so schwerig ist wie
die Kunst der Beobachtung.

Justus von Liebig (1803-1873)88

There is no doubt that the term “aromaticity” is
one of the most widely used terms in chemistry. At
the same time, “aromaticity” may well be one of the
most widely misused terms in chemistry, not by being
attributed to compounds that do not qualify as
aromatic, but by becoming so unspecified that it is
applied to too many compounds that show widely
different physico-chemical properties. Labels that are
so broad that they apply to a multitude of compounds
are bound to cause confusion, just as confusion may
arise when there are too many Smiths, Browns, and
Jones in the same locality. To reduce the latter
confusion, people have been given two and even three
names; hence, it is understandable that similar
attempts were made to discriminate among several
types of aromaticity, like pseudo-aromaticity, homo-
aromaticity, quasi-aromaticity, etc. (Table 2).

The root of the problem is not only that, from the
very beginning, the term “aromaticity” was not
rigorously defined, but also that, from the very
beginning, opposing views on how to characterize
aromatic compounds were advocated. Kekulé89 in
1865 proposed that the concept of aromaticity be
based on structural features of conjugated polycyclic

compounds, but in the next year Erlenmeyer90 ad-
vocated the use of properties of “aromatic” compounds
to define aromaticity. If properties are to be taken
as criteria, then the first question to be asked is
which properties and why? But there is another
serious problem with such an empirical approach
that may imply a “circular argument”.91 In order to
use such an approach, one has to decide in advance
which molecules are aromatic so that their properties
can be considered as standard. The standards se-
lected in such an approach maintain a preferential
treatment by being assumed to be aromatic proto-
types, while they may in fact already be partially
“contaminated” with some less than aromatic struc-
tural characteristics. For example, if we select as
standards the well-established aromatic species, such
as the benzenoid hydrocarbon compounds, then com-
pounds that differ from benzenoids structurally may
be found to be less aromatic. For example, azulene92

and the [18]annulene discussed by Sondheimer and
Wolovsky93 may not qualify as aromatic compounds
as much as benzenoids because they lack similarity
to benzene. Yet benzene and azulene both, as well
as [18]annulene, as we will see later, can be viewed
as aromatic prototypes.

There are no such difficulties if we try to charac-
terize aromaticity on the basis of some structural
features of conjugated polycyclic compounds. If a
compound has the feature considered essential for
aromaticity, it is aromatic; if it lacks the critical
feature, it is not. But, of course, the problem remains
to find which structural feature of aromatic molecules
is critical for aromaticity! There are a number of
fallacies that have contributed to a misunderstanding
of the notion of aromaticity. In order to illustrate just
one of the common fallacies, consider a list of words
in which each successive word differs only by one
letter from the previous word, a “minor” change:

As we can see, an accumulation of minor changes
may result in a major fallacy: WHITE ) BLACK.
The mathematician C. L. Dodgson (1832-1898) (bet-
ter known as Lewis Carroll, the writer of the re-
nowned book Alice’s Adventures in Wonderland) is
the author of numerous such illustrations, which he
envisaged as the game of doublets. The English

Table 2. Types of Aromaticity

type of aromaticity described by year

pseudo-aromaticity W. v. E. Doering et al. 1956
homo-aromaticity S. Winstein 1959
quasi-aromaticity D. Lloyd and E. R. Marshall 1964
anti-aromaticity A. L. Chung and M. J. S. Dewar 1965

R. Breslow 1968
super-aromaticity Clar 1972
3-D aromaticity R. B. King and D. H. Rouvray 1977

D. M. P. Mingos 1977
J.-i Aihara 1978

spherical aromaticity H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley 1985, 1990
σ-aromaticity V. I. Minkin, M. N. Glukhovtsev, and B. Ya. Simkin 1994

WHITE f WHILE f WHALE f SHALE f
SHAVE f STAVE f STOVE f STORE f
STORK f STOCK f STACK f SLACK f

BLACK
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magazine Vanity Fair runs contests challenging
readers to come up with the shortest possible “trans-
formation” of cases such as WINTER ) SUMMER,
WOOD ) TREE, FOUR ) FIVE, OAT ) RYE, etc.94,95

It is not difficult to imagine how an accumulation
of small changes in molecular properties could
similarly result in the “doublet” AROMATICITY )
ANTI-AROMATICITY. All that is needed is to find
a sequence of compounds which differ little, starting
with benzene and ending with cyclooctatetraene. In
Figure 2 we show one such set of compounds, a
sequence of similar compounds, in which compounds
in adjacent positions in the list are expected to
show only minor changes in their properties. How-
ever, an accumulation of these small changes
results in a “proof” that AROMATICITY ) ANTI-
AROMATICITY. Figure 2 was constructed mainly to
make the point that properties of molecules should
not be used for their classification, because there are
no clear-cut boundaries that would separate com-
pounds in two or more classes.

III. Dilemmas
(Aromaticity) is a funny subject. The first time
you go through the subject, you don’t understand
it at all. The second time you go through it, you
think you understand it, except for one or two
small points. The third time you go through it,
you know you don’t understand it, but by that
time you are so used to the subject that it doesn’t
bother you any more.

See ref 96.
In trying to clarify the notion of aromaticity, one

confronts several dilemmas. Should aromaticity be
a qualitative concept or quantitative? Should aroma-
ticity be characterized by structural attributes or by
molecular properties? Is the valence bond approach
or molecular orbital theory more suitable for defini-
tion of aromaticity? Could chemical graph theory
offer better insights into aromaticity than the tradi-
tional quantum chemical approaches? We will ad-
dress these dilemmas in the following sections.

A. Qualitative versus Quantitative Approaches
When you can measure what you are speaking
about, and express it in numbers, you know
something about it. But when you cannot mea-
sure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfac-
tory kind: It may be the beginning of knowledge,
but you have scarcely, in your thoughts, ad-
vanced to the stage of science.

Lord Kelvin97

While some concepts in chemistry that serve us
well are non-numerical and will remain qualitative,
others have been from the start numerical and
quantitative, even if not uniquely defined. For ex-
ample, molecular shape and molecular similarity are
qualitative, descriptive concepts that may not be
characterized uniquely by a single number, or even
by a sequence of numbers. Shape at best will require
numerous descriptors that may not even be easy to
order, while similarity may depend to a great extent
on descriptors selected for the representation of
objects considered. Thus, molecules that may be
similar in one aspect are not necessarily similar when
some other structural or experimental feature is
considered.

As accumulation of data increases, some concepts
that were initially qualitative may offer an op-
portunity for quantitative (numerical) characteriza-
tion. This applies to several “ambiguous” concepts in
chemistry, a selection of which is listed in Table 3.
However, it is important to stress that characteriza-

Figure 2. Sequence of compounds, starting with benzene
and ending with cyclooctatetraene, which gradually change
from aromatic into anti-aromatic.

Table 3. List of Somewhat Ambiguous but Common
and Useful Concepts in Chemistry

ambiguous concepts

aromaticity molecular shape
branching molecular size
complexity molecular surface
resonance energy molecular volume
reactivity flexibility
similarity foldedness
resonance
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tion of a structural property of a molecule by numer-
ical descriptors ought to be preceded by first defining
such quantities. When this is not the case, we may
expect the use of alternative schemes for character-
ization of a single property. It may happen that,
subsequently, one of the proposed schemes will be
found better than the others and will prevail, and
thus become “the definition” for the property consid-
ered. Often, the presence of alternative schemes for
the same property or feature causes confusion rather
than clarifying the concepts involved.

We may speak of a degree of aromaticity, a degree
of branching, a degree of flexibility, a degree of
foldedness, and a degree of chirality, but in each case
we first have to define the branching, the flexibility,
the foldedness, and the chirality, if these have not
been well defined before. Similarly, we may attribute
numerical magnitudes to molecular complexity, to
molecular resonance energy, to molecular size, to
molecular surface, and to molecular volume. It is
conceivable that different authors may choose differ-
ent numerical characterizations for the same struc-
tural aspects of molecules, which may, but need not,
be the beginning of confusion. In such situations, it
is essential that those who follow clearly indicate
which particular definition they adopted in order not
to cause confusion by overlooking the differences in
the definitions for the same concepts as used by
others.

It is not uncommon to see, in chemistry journals,
research papers that use specific scientific terms
without prior definition of such terms. Consider the
widely used term “polycyclic aromatic hydrocarbon”
(PAH), which is even the title of a well-known
chemistry journal. Have you seen this term defined?
What is a polycyclic aromatic hydrocarbon? Clearly,
all polycyclic hydrocarbons formed by fusion of ben-
zene rings would be recognized by most chemists as
“polycyclic aromatic hydrocarbons”, but these could
also be called polycyclic benzenoid hydrocarbons. The
term “polycyclic aromatic hydrocarbon” apparently
applies to a wide class of compounds, which remain
unspecified. Nevertheless, PAH is a useful term and
is likely to survive because the term “aromatic” does
not exclude variations in the level of the aromaticity
that such compounds may have. Hence, although this
vague label does not specify what it includes, it does
suggests what it excludes. It is hoped that eventually
the class of PAH compounds may allow for a finer
sub-classification of the compounds grouped in this
way that can range from “fully aromatic” to “empty”
aromatic compounds, to borrow the terminology of
Clar (which he used for individual rings and not
molecules as a whole).

In contrast to the practice in chemistry, in which
it is not uncommon to use terms without prior strict
definition, the traditional practice in mathematical
literature is to give, at the very beginning of a
scientific paper, all the necessary definitions. This
applies even to well-known concepts with which most
readers may be familiar. It is then not surprising
that, in the mathematical literature, there is little,
if any, confusion regarding the concepts used. Math-
ematicians can trace this “good behavior” of clearly

presenting the definitions of the terms used in their
papers back to Euclid! The first books by Euclid on
the elements of geometry started with definitions of
a point, a line, a straight line, a plane, etc.98 In
contrast, chemistry has a humble beginning in mystic
alchemy, which, as is known, was based more on
wishful thinking than on rational thinking.

In order to keep pace with this noble tradition of
mathematicians, we will try in this review to offer
definitions for the most important concepts and ideas
used. Since we will be using the language of discrete
mathematics, and in particular will present applica-
tions of graph theory to chemistry, let us start with
the definition of a graph, which is a mathematical
object not to be confused with graph as a diagram or
plot. The definition that we give is an “informal”
definition that avoids notions of Descartes products
among elements of sets s interested readers can
search for an alternative rigorous definition in any
textbook on graph theory.

Definition: A graph is a mathematical object de-
fined as a set of elements V, among which is defined
a binary relation E.

The elements in the set are called vertices and are,
as a rule, graphically presented as small circles. A
relation that either exists between two elements or
not is called a binary relation (having only two
possibilities, “yes” or “no”, informally: any two ele-
ments are either connected or not). The relations,
when depicted, are called edges and are drawn by
connecting corresponding vertices, represented as
small circles, by lines. Graphs, which can have
multiple connections and even loops, in many ways
resemble simple molecular diagrams. However, graph
theory is concerned with topological and combinato-
rial properties of such objects, which can be repre-
sented pictorially in many different ways. Because
graphs can well represent chemical molecules, many
chemist may find graphs more familiar objects than
they thought. However, one should keep in mind all
the time that molecules do not represent graphs, but
graphs may represent molecules. Graphs are abstract
objects of no fixed geometrical form with a multitude
of diverse graphical representations.

Concerning aromaticity, for some time it has been
recognized and generally accepted that aromaticity
is associated with the extra stability of cyclic conju-
gated systems relative to their acyclic counterparts.
There are no disputes here, and such characterization
may well continue to serve as a qualitative charac-
terization of aromaticity. The problem with the above
“definition” occurs when one considers quantitative
aspects of aromaticity and tries to answer which of
two or more molecules is more aromatic. The above
description of aromaticity does not specify which
“acyclic counterpart” is to be used as a standard when
comparing different polycyclic systems. The molecu-
lar resonance energy (RE) is one such widely accepted
measure of this “extra” stability, but again the
calculation of the RE requires one to know what
acyclic structure is to be assumed as the starting
point. Additional difficulties may arise due to possible
alternative computational definitions of the molecu-
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lar RE. In the case of MO approaches, the following
two definitions of RE have some merit:

(1) Dewar43 defined RE as the difference between
the total π-electron energy, Eπ, and the energy of an
acyclic polyene-like reference structure obtained by
summing over all bonds (the corresponding bond
types nij) their energies Eij.

(2) Gutman, Milun, and Trinajstić,99,100 and Aiha-
ra,101 independently defined the “acyclic” standard,
called the topological RE, through the eigenvalues
of a polynomial related to the characteristic polyno-
mial of the secular equation. In mathematical litera-
ture, such a polynomial is known as the matching
polynomial of a graph.102-104

In the HMO model, the roots of the characteristic
polynomial represent orbital energy levels and allow
one to obtain molecular energy. Coulson pointed out
in 1950 that the secular equation, which in the case
of the HMO model is the characteristic polynomial
of the graph adjacency matrix, can be constructed
from a collection of contributions of various smaller
cyclic and acyclic subgraphs.105 Moreover, as shown
by Sachs,106 one can construct the characteristic
polynomial by considering only certain combinations
of isolated edges and isolated cycles of a molecular
graph. For an introduction to the approach of Sachs
for calculation of the characteristic polynomial, see
ref 107. In the construction of the matching poly-
nomial, one proceeds just as in the construction of
the characteristic polynomial, except that one dis-
regards all the contributions arising from components
that involve cyclic fragments. Hence, the resulting
polynomial bears a close relationship to the charac-
teristic polynomial, but it lacks cyclic contributions.
According to Trinajstić and Aihara, the roots of the
matching polynomial serve to define the energy of
the unique “acyclic” standard for the calculation of
the molecular resonance energy. Such resonance
energy has been referred to as topological resonance
energy (TRE).

The matching polynomial, constructed by ignoring
the contributions from cyclic fragments, is called the
acyclic polynomial by Trinajstić et al. and the refer-
ence polynomial by Aihara. The approaches of Tri-
najstić and Aihara require that the roots of the
matching polynomial for conjugated hydrocarbons are
real numbers. Because the matching polynomial is
not associated with a symmetric matrix, as is the case
with the characteristic polynomial, there is no guar-
antee that its roots will be real numbers. However,
Heilmann and Lieb108,109 proved that, indeed, the
roots of matching polynomials are always real. Godsil
and Gutman have also shown the same.110 For
computation of the matching polynomial in benzenoid
systems, see refs 107-118, while for computer evalu-
ation of the matching and the characteristic poly-
nomials, see refs 119 and 120.

Criticisms have been raised concerning the topo-
logical RE in that ambiguities may arise in calcula-
tion of RE in some situations due to alternative
population of orbital levels with electrons.121-124 To
what extent such criticisms hold is not fully clear,
particularly if one views the difference in the eigen-
values of the characteristic polynomial and the eigen-

values of the matching polynomials as a computa-
tional tool to extract the role of cyclic components in
the characteristic polynomial and abandons the
interpretation of the eigenvalues as one-electron
orbital energies. While both Coulson’s105 and Sa-
chs’s106 approaches to computation of the character-
istic polynomial were directly applicable to the HMO
model, both approaches can be extended to other MO
models by introducing suitable weights for vertices
and edges, as outlined by both Aihara125,126 and by
Mallion et al.127

B. Observables versus Non-observables
The essential fact is simply that all the pictures
which science now draws of nature, and which
alone seem capable of according with observa-
tional facts, are mathematical pictures.

Sir James Jeans (1877-1946)128

Observables are defined, in the sense of Dirac’s
approach to quantum mechanics,43 as quantities that
can be experimentally measured and, in principle,
computed from the first principles of quantum me-
chanics using the total molecular wave function.
Hence, if one wants to compute an observable, one
needs to know, and then use, the total molecular
wave function of the molecule or, alternatively, the
total electron density. Anything computed not using
the total molecular wave function or the total electron
density does not qualify as an observable. For ex-
ample, in the calculation of Coulson’s bond orders,
one uses molecular orbitals rather than the total
molecular wave function. Hence, Coulson’s bond
orders are non-physical, non-observable quantities.
But that does not mean that they are not useful! They
are useful as they allow comparison of CC bond
lengths within the same molecule or in different
molecules, and thus they allow one to predict un-
known CC bond lengths.

“Aromaticity” is also a non-observable in the strict
sense of Dirac’s quantum theory. So are the reso-
nance energy, the local aromaticity, the atomic
charges, the bond polarizabilities, the bond dipoles,
etc., including the HOMO-LUMO separations as
typically calculated in simple MO theories. The same
is again true of Kekulé valence structures, conjugated
circuits,51-53 Clar’s π-sextets,49 Pauling bond order,48

valence structures of “the higher degrees of excita-
tion”,129 Rumer diagrams,130 sp, sp2, and sp3 hybrids

Table 4. Non-observables of Chemistry

non-observables

aromaticity
hybridization Kekulé valence structure
molecular orbitals Clar’s structure
localized orbitals Clar’s π-sextet
natural orbitals Fries valence structure
HOMO anti-Fries valence structure
LUMO conjugated circuits
atomic charges resonance energy
atom polarizabilities Rumer diagrams
Pauling bond orders partial ordering
Coulson bond order substructure
bond dipoles topological indices
bond polarizabilities nucleus-independent chemical shift
potential function ring currents
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and hybridization in general,48 etc., the quantities
that are of interest in VB theory. Finally, the same
can be said of various graph theoretical concepts,
including topological RE, 9-101 various molecular
descriptors (the so-called topological indices),54-57 like
the connectivity index 1ø61,62 and the variable con-
nectivity indices 1ø f,131-138 Hosoya’s Z topological
index,60 Balaban’s J index,68,69 and the Wiener index
W.59 In Table 4 we have compiled a short list of a
number of non-observables of interest in chemistry.

It is important to realize that a non-observable has
a meaning and an interpretation that are mostly
limited within the model for which it has been
defined. Thus, typically a non-observable will not
have a meaning outside the model for which it was
constructed. For example, the Kekulé valence struc-
tures, which are fundamental to VB theory and
chemical graph theory, have no simple meaning in
MO theory. Analogously, the HOMO-LUMO separa-
tion, which has meaning in various MO models, has
no simple interpretation in the VB model. Similarly,
while there is a fair correlation between the Coulson
bond orders and the Pauling bond orders for selection
of smaller benzenoid hydrocarbons, as is to be
expected for these two quantum chemistry models,
one may find, somewhat unexpectedly, that there is
an even better correlation between the Coulson bond
orders and the graph theoretical connectivity in-
dices,139-141 which represent two totally unrelated
molecular models. The connectivity index 1ø is de-
fined as a bond-additive quantity in which bond
(m,n), where m and n are the graph theoretical
valences of vertices, makes a contribution 1/x(mn)
to the molecular index.61 Why should a graph theo-
retical construction like 1ø produce a good agreement
with quantum chemically computed bond orders? Is
it not possible that “totally unrelated models” have
some unrecognized common ground?

C. Structural Criteria versus Properties as
Criteria

There is no Royal road to Aromaticity.
See ref 142.

In Table 5 we have listed a selection of experimen-
tal properties of “aromatic” compounds that have
been considered in the past for characterization of
aromaticity. We have listed also the calculated

(theoretical) properties used to characterize aroma-
ticity. When comparing the two different approaches
to aromaticity, we have to conclude that calculated
properties have some advantages per se over the use
of experimental properties. First, in principle, they
can always be obtained. Second, they can be per-
formed on non-existent structures, intermediates,
and structures for which experimental data are
missing. One should bear in mind that, today, about
20 million compounds are registered, but experimen-
tal properties of most molecules remain unknown.
For example, “The Toxic Substances Control Act
(TSCA) Inventory has nearly 80,000 entries 50 % of
which do not have data for even one physicochemical
property and about 85 % of them have no data on any
genotoxicity bioassay.” 143

What is wrong with using properties rather than
structural features for classification of compounds?
We have already mentioned the problem of selecting
the “standard” property. That alone should be enough
to reject properties as candidates for classification of
compounds. But there are additional reasons for not
following Erlenmeyer’s suggestion that aromaticity
be based on properties of aromatic compounds. Recol-
lect that sugar, saccharin, and many other sweeten-
ers would be classified in the same group if sweetness
were the criterion for classification, yet they are
structurally vastly different. Just because at the
present we cannot recognize the critical structural
features of aromatic compounds, this is not good
enough reason for abandoning the aromaticity “ship”
and lamenting the lack of merits of the notion of
aromaticity. Suggestions to abandon the notion of
“aromaticity” have been heard from time to time.144-147

We strongly advocate a “return to Kekulé” position
that aromaticity should be characterized by the
structural features of a molecule. We not only should
reject the use of properties for classification of aro-
maticity, but should continue to repudiate approaches
based on properties of molecules for characterization
of aromaticity as being inherently prone to fallacious
conclusions. If properties are used as criteria for
classification of compounds, they will continue to blur
the boundaries between fully aromatic, aromatic,
non-aromatic, and anti-aromatic molecules because
properties may vary continually between molecules.
In contrast, structural components are either present
or absent in a molecule, and thus a molecule either
qualifies or does not qualify to belong to a particular
class.

It needs to be recognized that Erlenmeyer’s ap-
proach represents a step back and out of the prevail-
ing attitude in chemistry, where the starting point
is molecular structure. Consider in analogy, for
example, a definition of n-alkanes not as compounds
built by a regular increment of methylene groups, but
as compounds showing some regularity in their
properties. For instance, one could define n-alkanes
as compounds characterized by regular increments
of their boiling points (bp) with size. As one can find
out, the bp of n-alkanes can be predicted with high
precision (about 0.15 °C) over the range of several
hundred degrees Celsius. Although such an “experi-
mental” definition of n-alkanes would be legitimate,

Table 5. Experimental and Theoretical Properties
Used as Criteria of Aromaticity

physical properties

equalization of CC bond lengths (bond alternation)
deviation of peripheral bonds from those of benzene
ring currents
anisotropy of diamagnetic susceptibility
anisotropy of diamagnetic exaltation
Faraday effect (excess of magnetic rotation)
energy barrier to restricted rotation

calculated properties

first- and second-order bond fixation
π-electron delocalization
resonance energy
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the approach would appear to most chemists as
absurd. And, indeed, it appears as absurd because
the structural features that define n-alkanes are so
evident. Apparently, people are considering various
properties for alternative “definitions” of aromaticity
because we lack the courage to admit that we do not
know what are the critical structural features that
lead to aromaticity. Why should we define aromatic-
ity using regularities of their properties, be it bond
equalization, the magnitudes of ring currents, or any
other property, and at the same time consider it
ridiculous to define n-alkanes on the basis of the
regular increments of their boiling points?

D. Valence Bond Theory versus Molecular Orbital
Theory

The formulation is mathematically equivalent
to the more usual formulation. There are there-
fore, no fundamentally new results. However,
there is a pleasure in recognizing old things from
a new point of view.

Richard P. Feynman (1918-1988)148

Quantum chemistry started with Heitler and Lon-
don’s calculations on the H2 molecule32 that represent
seminal valence bond calculations. Quantum chem-
istry was widely accepted among chemists through
Pauling’s The Nature of the Chemical Bond,48 in
which the VB approach dominated. However, with
Hückel’s work on the benzene MO model149-151 and
the relative ease of MO computations with overlap-
ping 2pz orbitals rather than interacting Kekulé
valence structures, the MO method continually gained
strength. The MO approach was popular in physics,
from which Hückel adopted his (effectively binary)
Hamiltonian, the so-called “hard-sphere” Hamilto-
nian that Felix Bloch used for calculations on met-
als.22,23 Superficially browsing the literature may give
an impression that VB is no longer a viable theoreti-
cal model. But that is not the case (for literature on
VB, see refs 29-31). In our view, “valence bond
versus molecular orbital theory” is, in fact, an ill-
posed dilemma and should be replaced by the at-
titude, “valence bond and molecular orbital theory”.

One should not overlook the fact that both of these
models represent just different starting points in
quantum chemical calculations. It has been known
for some time that if both methods were pushed to
the limit by including the “higher order” contribu-
tions, they would both yield the same results. The
situation is analogous to the relationship between
Heisenberg’s “matrix mechanics” and Schrödinger’s
“wave mechanics”, which are mathematically equiva-
lent. For an account of The History of Quantum
Theory, see the book by Hund (of Hund’s rules) with
that title.152

The reason that MO theory has advanced so much
is that it is relatively “easy” to compute corresponding
matrix elements in MO models. For example, if the
MO method is applied to a molecule like buckmin-
sterfullerene,153,154 one would consider overlapping
among 60 π-electrons. In contrast, in the simple VB
approach, the resonance theory, one has to consider
the 12 500 Kekulé valence structures155 that this

spherical carbon allomer has. Hence, the choice is
between considering a 60 × 60 matrix of a simple
MO model and a 12 500 × 12 500 matrix of a simple
VB model! But that is not all. There is available
computer software (based on Gaussian functions) for
considering more ambitious ab initio MO calcula-
tions, while more ambitious VB calculations would
make an already bad situation much worse, because
they would necessitate inclusion of an even larger
number of Kekulé structures of higher “excitation”,
and possibly structures involving charged carbon
atoms. The number of valence structures for a system
having n π-electrons to be considered in an accurate
VB calculation is given by the Catalan numbers,
which grow exponentially.37-39 We ought to mention
that there are also “hybrid” methods, which combine
some aspects of MO and VB theories, like BORT, the
approach developed by Živković.155-162 BORT stands
for “bond orbital resonance theory”, which conceptu-
ally follows the resonance pictures by interpreting
chemical bonds in the MO rather than the VB sense.
In the early development of quantum chemistry,
Linnett proposed an approximate method of calculat-
ing wave functions that also differed from MO and
VB methods. This approach was known as the “non-
paired spatial orbitals method”.163

Herndon,164-168 who developed his “resonance
theory”, has shown that simple VB approaches can
lead to useful characterization of conjugated hydro-
carbons. Herndon, in his approach, considers only the
standard Kekulé valence structures of a molecule as
the basis for his calculations. One starts by construct-
ing the Hamiltonian matrix, the matrix elements of
which are defined by interactions between pairs of
Kekulé valence structures. Here Herndon introduces
an important simplification, which makes his calcu-
lations even simpler than HMO calculations for the
same benzenoid system. Herndon defines the inter-
actions between Kekulé valence structures by quan-
tum chemical integrals γ1 and γ2, the magnitude of
which depends only on the number and the relative
position of CC double bonds within various Kekulé
valence structures. If two Kekulé structures, when
superimposed, differ in locations of three CC double
bonds within a single benzene ring only, their inter-
action is expressed by the integral γ1. If two super-
imposed Kekulé structures differ in locations of five
CC double bonds within two adjacent benzene rings,
their interaction is given by the integral γ2. One could
continue and consider interactions between Kekulé
valence structures that differ in locations of seven,
nine, etc. CC double bonds, but Herndon decided that
such interactions would be small. Hence, if two
superimposed Kekulé valence structures differ in
more than five locations of the CC bonds, it is
assumed that their interaction is negligible. In Figure
3 we illustrate the interaction between the six Kekulé
valence structures of pyrene graphically. Kekulé
valence structures in Figure 3 connected by solid
lines differ in locations of only three CC double bonds
in a single benzene ring, while structures connected
by dashed lines differ in locations of five CC double
bonds in two adjacent benzene rings. The method of
Herndon164-168 is related to the approach outlined
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earlier by Simpson,169 which although exposed in a
textbook170 was mostly undeservingly overlooked,
never receiving due attention until Herndon redis-
covered and resurrected the simple VB calculations
20 years later.

E. On Interlocking of the MO and the VB
Methods

We should point out that there are several subtle
connections between VB and MO approaches that
tend to be overlooked and that clearly indicate that
the two approaches are intimately related. Hence, the
question is not MO or VB, but MO and VB. Let us
mention some of these connections between the two
major quantum chemical methodologies. Apparently,
quite unexpectedly, Ham, Ruedenberg, and Platt171-173

found a relation between the Coulson bond orders
and the Pauling bond orders. As is known, the
Coulson bond orders and Pauling bond orders offer
somewhat different characterizations for CC
bonds,140,141 but as shown by Platt, Ham, and Rueden-
berg, unexpectedly the two quantities are mathemati-
cally closely related. As is well known, the Coulson
bond orders are obtained by summing for each bond
the contributions made by the product of atomic
coefficients over the occupied HMO.46 However, if the
same contributions from the molecular orbital Ψi are
divided by the corresponding eigenvalue λi, one
obtains, as Ham, Ruedenberg, and Platt found,171,172

the Pauling bond order. Using this mathematical
relationship between the Pauling bond orders and the
Coulson bond orders, one can find the Pauling bond
orders for CC bonds for molecules having very large
numbers of Kekulé valence structures using the
simple HMO approach! This would be particularly

suitable for the giant benzenoids of Müllen174-177 on
one side and fullerenes on the other side.

Another illustration of “hidden” connections be-
tween the simple MO and the simple VB methods
was illustrated by Heilbronner,178 who reported an
intriguing connection between the graph theory and
the HMO theory valid for bipartite graphs. Let us
first define bipartite graphs:

Definition: A graph is bipartite if its vertex set V
can be partitioned into two subsets V* and V 0 such
that each edge joins a vertex of V* with a vertex of
V 0.

All acyclic graphs and all graphs having only even-
member rings are bipartite. Hence, graphs of ben-
zenoid hydrocarbons are bipartite. Bipartite graphs
have been known in chemical literature as alternants.
The carbon atoms belonging to V* and V 0 have been
referred to as the “starred” and the “non-starred”
carbon atoms. For bipartite graphs, Heilbronner
came upon a graphical construction of A-1, the
inverse of the adjacency matrix of a molecule (if the
adjacency matrix has an inverse). We illustrate the
approach of Heilbronner for naphthalene, which by
being a bipartite graph allows one to write the
adjacency matrix in the following form:

Here, Bmn is a binary adjacency m × n matrix be-
tween vertices of V 0 and vertices of V*, m and n are
the numbers of elements in V 0 and V*, respectively,
Bmn

T is the transpose of Bmn, and 0m and 0n are
m × m and n × n zero matrices, respectively. A sub-
matrix Bmn, which connects the “starred” and the
“non-starred” carbon atoms in naphthalene, is shown
in Table 6. In the mathematical literature, one refers
to Bmn as a bi-adjacency matrix. We have numbered
the “starred” atoms as 1-5, and the “non-starred”
atoms as 6-10. Construction of the elements of the
inverse matrix is illustrated in Figure 4. The ele-
ments of the inverse matrix are given by the quotient
Kmn/K, where K is the number of Kekulé structures
of a molecule and Kmn is the number of Kekulé
structures for the residual of a molecule when
vertices m and n (and all edges adjacent to them) are

Figure 3. Herndon’s graphical illustration of the interac-
tions between the six Kekulé valence structures of pyrene.164

The solid lines represent interactions given by the integral
γ1, and the dashed lines represent interactions given by
the integral γ2.

Table 6. Block of the Inverse Adjacency Matrix of
Naphthalene

A ) [0m Bmn

Bmn
T 0n ]
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erased. The signs of the elements of the matrix are
determined by counting the number of CC double
bonds between carbon atoms m and n. Elements are
positive if there are an even number of CC double
bonds between m and n or if m and n are adjacent.
Elements are negative if there are an odd number of
CC double bonds between m and n. Alternatively, as
a footnote in the paper by Heilbronner178 explains,
the sign is given by the parity of the number (Z -
1), where Z is the number of CC double bonds along
any path from vertex m to vertex n. One could also
determine the sign of the contributions in A-1 by
considering only “conjugated chains” or “conjugated
paths”,179,180 that is, the paths which start and end
with CC double bonds along which there is a regular
alternation of CC single and CC double bonds.
Interestingly, this could have been an earlier discov-
ery of paths within Kekulé valence structures having
alternating CC bond types, but the significance of
such paths has not been recognized at the time. As
we will see later, circuits with alternating CC double
and CC single bonds, which are the basis of the
conjugated circuits method,45-47 play a crucial role

in determining the stability of polycyclic conjugated
hydrocarbons and their aromaticity.

F. Chemical Graph Theory versus Quantum
Chemistry

... give us insights, not numbers.
C. A. Coulson181

Again, this is an ill-posed dilemma that reflects
much of the misconceptions and much of the misun-
derstandings of chemical graph theory. In Table 7
we have listed the kind of questions that are of
interest in chemistry, the answers to which are not
to be obtained from the standard quantum chemistry
calculations, but for which chemical graph theory
may offer answers. Observe that these questions do
not belong to quantum chemistry, which at best may
in some instances offer numerical values for a
property considered. Many of the questions posed can
be answered by using available algorithms of the
chemical graph theory.64 Typically, questions that
involve the relative magnitudes of molecular proper-
ties belong to chemical graph theory. However, if one
is interested in precise molecular geometry, molec-
ular spectra, and such, the answers are to be sought
using quantum theory. Because the molecular geom-
etry and the molecular spectra are of considerable
interest, it may appear that quantum chemistry may
be concerned with more important questions and that
therefore quantum chemistry is the more important
methodology. That may be so, but it all depends on
the questions one is asking and the problems one
considers. If one is interested in problems beyond the
reach of quantum chemical calculations, regardless
of how important quantum chemistry is, clearly one
has to consider other theoretical tools. Obviously, the
two theoretical approaches, because they focus on
different questions, are complementary to each other.

Despite being different and addressing different
questions, nevertheless quantum chemistry and
chemical graph theory (shortly GT, for graph theory)
have much in common. In Figure 5 we have il-
lustrated several overlapping regions and common
topics between quantum chemistry on one side, that
is, valence bond theory and molecular orbital theory,
and chemical graph theory on the other side. As we
see from Figure 5, the VB and MO methods have in
common the Schrödinger equation, while MO and GT
have in common the Hückel MO calculations. It is
this aspect of the overlap of MO and GT that has been

Figure 4. Graphical construction of A-1, the inverse of
adjacency matrix A, of naphthalene as outlined by Heil-
bronner.178 Only symmetry-non-equivalent matrix elements
are illustrated.

Table 7. Questions To Which Chemical Graph Theory May Offer Answers

How many isomers has C10H22?
What is the number of alkanes having n carbon atoms and longest chain of length d?
How many Kekulé valence structures has C60?
Why is the boiling point of 2,5-dimethylhexane greater than that of 2,2-dimethylhexane?
How many conformations has a normal alkane chain having N carbon centers?
Can the sum of carbon-13 chemical shifts be viewed as a molecular property?
Why do similar molecules sometimes display different properties?
How many degenerate rearrangement isomers are possible for P7

3- ?
Why, within the HMO model, are 1,4-divinylbenzene and 2-phenylbutadiene isospectral?
Why, within the HMO model, do many structures show excessive degeneracy for certain eigenvalues?
Which isomer among cata-condensed benzenoids has the largest number of Kekulé structures?
How many benzenoid hydrocarbons have the same number K of Kekulé structures?
How large ought a finite system be to exhibit properties similar to those of the corresponding infinite system?
Which atoms (atomic groups) in a larger molecule having bioactivity constitute a pharmacophore?
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the cause for much of the misunderstanding of GT
and identifying it with HMO theory. On the other
hand, the common ground between VB and GT is
Kekulé valence structures, which is known in the
mathematical literature as the “complete 1-factor
cover” of a graph. Of course, each of the three
methodologies has concepts that are specific to it and
which have no necessarily simple interpretation
outside the particular methodology. In the case of VB
this is the concept of hybrids, in the case of MO this
is the notion of the HOMO-LUMO gap, and in the
case of GT these are conjugated circuits. Finally, we
find aromaticity, one of the central ideas in chemis-
try, which has meaning in VB, MO, and GT, and
hence can be approached by all three methodologies.
Observe that all subjects shown in Figure 5 are non-
observables in the strict sense of the quantum theory
(excluding the Schrödinger equation, which repre-
sents a postulate).

Figure 5 offers an overview of the inter-relationship
between the three methodologies of theoretical chem-
istry, VB, MO, and GT, but much more could be
added. For example, molecular orbital theory and
chemical graph theory, besides having in common one
of the simplest calculations (the Hückel MO method),
meet again at the other end of very complex ab initio
calculations, the exact VB calculations known as
graphical unitary group approach (GUGA), where
graphs are used for book-keeping of the numerous
configuration interaction contributions.182-192 In Fig-
ure 6 we have illustrated one such graph from a
paper by Duch and Karworski192 on a graphical
approach to the direct configuration interaction
method which keeps track of the number of electrons
and the number of orbitals involved in configurations.
The graph that is shown corresponds to the case of
six electrons and six orbitals, and it results in 141
orbital configurations. These graphical concepts have
been introduced by Paldus,182-185 Matsen,186 and
Shavitt,187,188 and they allowed construction of algo-

rithms for the direct configuration interaction (CI)
methods.189-192 For new developments in the Hückel
theory, we direct readers to the work of N. Trinajs-
tić.70,193

As shown in the center of Figure 5, the VB, MO,
and GT methods have in common the quest for
aromaticity. In this review, we will be concerned
mostly with VB and GT approaches to aromaticity,
but MO, although not given the same visibility in this
review, plays an equally important role for clarifica-
tion of aromaticity. On one side, it offers reliable SCF
MO type calculations of the resonance energy, while
on the other side, particularly with respect to GT, it
opens avenues for extending the notion of aromaticity
from hydrocarbons to heterocyclic compounds. We
should mention in particular the route that Parr and
Pearson194 have pioneered by developing the notion
of absolute hardness.

Before leaving this area where the three method-
ologies meet, one should recognize also the major
differences between graph theory and quantum chem-
istry. Graph theory does not produce numbers, such
as RE, on its own. Graph theory offers expressions
for RE, but parameters that enter such expressions
have to be either extracted from experimental data
or computed using quantum chemistry. On the other
hand, quantum chemistry gives numbers, such as
RE, but does it give insights? Consider the ben-
zenoids shown in Figure 7. Using quantum chemical
calculations, we can obtain reliable RE values for
many benzenoids, but we will have no idea why, for
instance, benzo[e]pyrene 1/7 has a higher RE than
benzo[a]pyrene 2/7, or why the resonance energy per
electron (REPE) is greater for triphenylene 3/7 than
for coronene 4/7. Quantum chemistry will supply us
with RE numbers, but it is graph theory that has
shown that these RE numbers are additive, and not
bond-additive, or ring-additive, but additive in terms
of conjugated circuits! Thus, in the case of the

Figure 5. Schematic illustration of the overlapping of
valence bond theory, molecular orbital theory, and chemical
graph theory. Figure 6. Graph of book-keeping of configuration interac-

tions involving six electrons and six orbitals (as depicted
in ref 192).
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resonance energies, graph theory gives to quantum
chemical calculations an interpretation, or in the
words of the late Professor Coulson, an insight. It is
regrettable that Coulson, who was quite optimistic
about chemical graph theory (see Biographical Notes
on Coulson), did not live to see its growth and
successes.

In summary, this author very much agrees with a
statement made by Paul Mezey at the meeting in
Girona in 1995, during his presentation on molecular
electron density calculations, that “molecules have
skeleton and molecules have body”.195 Molecular
skeletons are given by bond lines connecting atoms,
and molecular body is given by electron density
contours. However, in addition, as I stated in the
closing remarks of that conference in Girona, besides
having a skeleton and a body, molecules also have a
spirit, which is reflected in the conceptual features
associated with molecules as revealed by mathemati-
cal chemistry.

G. Clar 6n Rule versus Hu1ckel 4n + 2 Rule

Finding useful information is an intelligent
process requiring intelligent people because at
the end of the day only the intelligent can
recognize what is useful.

Tony Kent196

The Hückel 4n + 2 rule represents an important
success of early quantum chemistry, as it explains
the stability of benzene and several annulenes and
the lack of stability of cyclobutadiene, and the prefer-
ence for alternation of CC single and CC double bonds
in cyclooctatetraene. The rule predicts non-zero
eigenvalues for monocyclic systems having 4n + 2
carbon atoms and degenerate zero eigenvalues for
monocyclic systems having 4n carbon atoms. Frost
and Musulin197 illustrated this rule elegantly by
using the property of eigenvalues of cyclic systems
given by cosine functions to design projections of
vertices on energy coordinates (Figure 8). Zimmer-
mann198 modified the graphical diagram of Frost and
Musulin for the case of Möbius systems (see Figure

9). Möbius π-systems are those in which, along a cycle
of overlapping p-orbitals, by gradual twisting, even-
tually we have overlap of p-orbitals of opposite sign,
for the pattern of π-orbital levels.

The 4n + 2 rule solved the “mystery” of the pro-
found difference between benzene, [10]annulene, [14]-
annulene, and [18]annulene on one side and the 4n
monocyclic systems, like elusive cyclobutadiene and
puckered cyclooctatetraene, on the other side. At-
tempts were made to extend the 4n + 2 rule to
polycyclic systems, for which it was not initially
designed. Of numerous attempts in this direction, we
will mention only that of Platt,199 who proposed that
the 4n + 2 rule be applied to molecular periphery. It
turns out that Platt’s generalization of the Hückel
4n + 2 rule is correct when one restricts attention to
benzenoid hydrocarbons. For example, the perimeter
rule correctly classifies pyrene (which has 16 π-elec-
trons), perylene (which has 20 π-electrons), and
coronene (which has 24 π-electrons) as aromatic as
they have 14 or 18 π-electrons on the perimeter. But
the perimeter rule does not give a correct answer for
the non-benzenoid systems illustrated in Figure 10.
The structure on the left, which has 14 π-electrons
on the periphery, instead of being aromatic, as will
be seen later, is in fact “fully anti-aromatic”. On the
other hand, the structure on the right (corannulene),
which has 15 π-electrons on the periphery, is not

Figure 7. Benzenoids for which conjugated circuits point
to different RE (top), and benzenoids for which conjugated
circuits point to different REPE (bottom).

Figure 8. Eigenvalues of cyclic systems, depicted as a
projection of vertices on a vertical axis, as illustrated by
Frost and Musulin.197

Figure 9. Modification of the projection diagram of Frost
and Musulin for Möbius systems, as illustrated by Zim-
mermann.198

Figure 10. Failure of the perimeter rule: a “fully anti-
aromatic” non-benzenoid system having 14 π-electrons on
the periphery, and an aromatic corannulene having an odd
number of electrons on the periphery.
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covered by the rule, which deals only with even
numbers, although, as will be seen later, bowl-shaped
corannulene can be considered as “fully aromatic”.

The Hückel 4n + 2 rule received deserved atten-
tion, although the rule as proposed is of a very
narrow scope. It has also received undeserved misuse.
Its significance is not in its generality, but in that it
offers an important insight into the difference be-
tween 4n + 2 and 4n conjugated monocyclic systems
like benzene and cycooctatetraene. It clarifies the
aromaticity of the cyclopentadiene anion of Thiele200

as well as the tropylium cation of Doering and
Knox201 and higher analogues. As is today well
recognized, it strictly holds for monocyclic systems.
In contrast, Clar’s rule on the extra stability of 6n
π-electron systems,202 which has a wider applicability
than the Hückel 4n + 2 rule, neither has received due
attention nor is widely known. Clar observed that
benzenoid hydrocarbons which have 6n π-electrons
(e.g., benzene, n ) 6; diphenyl, n ) 12; triphenylene,
n ) 18; dibenzopyrene, n ) 24; and other benzenoid
compounds shown in Figure 11) are unusually stable.
This is how Clar described the unusual stability of
these 6n π-electron systems:202

Dibenzopyrene (3) is colorless hydrocarbon and
does not show the reactivity of pyrene. Triben-
zoperylene (4) is also colorless and does not give
benzogenic diene synthesis with maleic anhy-
dride like perylene. Tetrabenzanthanthrene (5)
and hexabenzocoronene (6) are pale yellow hy-
drocarbons of great stability...(hexabenzocoro-
nene) melting point could not be determined
because the melting-point tube melted long be-
fore the hydrocarbon.

In view of these facts, it is puzzling that Clar’s rule
on the extra stability of 6n π-electrons, which is quite
general, has been barely noticed, while the Hückel
4n + 2 rule, with its known limited application,
continues to be used and misused! We should add
that all the unusually stable 6n hydrocarbons that
have been synthesized recently by K. Müllen and co-
workers,174-177 known as “giant benzenoids”, are
systems having 6n π-electrons. Several giant ben-
zenoids described by Müllen et al. are illustrated in
Figure 12.

H. Hydrocarbons versus Heteroatomic Systems

When a man is tired of Hydrocarbons he is tired
of Chemistry.

See ref 203.

In this review we have restricted our attention
mostly to hydrocarbons. Why are we not to consider
polycyclic conjugated hydrocarbons having hetero-
atoms? By omitting compounds with heteroatoms and
by looking only to hydrocarbons, clearly we left out
most of chemistry. First, we want to draw attention
to chemists that there is a lot of interesting chemistry
and chemical architecture, as well as unusual chemi-
cal properties, which involve hydrocarbons alone. In
Figure 13 we illustrate several hydrocarbons that
already show a great variation in geometry: spiro-
pentane C5H8 (1), cubane C8H8 (3), bullvalene C10H10
(4), adamantane C10H16 (5), prizmane (6), diadaman-
tane C18H24 (7), trypticene C20H14 (9), and others. In
Figure 14 we show the skeletal forms of a selection
of larger hydrocarbons that show a variety of differ-
ent properties (listed in Table 8). To the compounds
mentioned we should add the class of non-benzenoid
hydrocarbons, which also show the considerable
structural diversity that is the main topic of the
present review. Hence, in defense of the chemistry
of hydrocarbons, we started this section by para-
phrasing Samuel Johnson’s well-known statement,182

“When a man is tired of London he is tired of life”,
because just as London is central to England, so are
hydrocarbons central to chemistry.

The reason for limiting our attention to conjugated
hydrocarbons when addressing the question of aro-
maticity is not our sole fascination with the chemistry
of conjugated hydrocarbons or a lack of interest in
non-hydrocarbons. The main reason that we have
confined the analysis of aromaticity to conjugated
hydrocarbon is to see if we can come to a consensus
on what are the critical structural factors that define
aromaticity. If we cannot agree on what structural
features are basic to the aromaticity of conjugated
hydrocarbons, it is unlikely that we will ever agree
on what structural elements are important for the
aromaticity of non-hydrocarbons. Therefore, at this
stage in clarification of the concept of aromaticity,
there is no sufficient justification to consider hetero-
conjugated systems in which additional, electronic
factors will also play an important role in aromaticity.
First, we have to resolve the problem of aromaticity
of conjugated hydrocarbons. Hence, first we have to
agree on the structural characterization of aroma-
ticity of conjugated hydrocarbons and then, if such

Figure 11. Unusually stable benzenoid hydrocarbons
having 6n π-electrons, discussed by Clar.
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characterization is accepted, we can proceed to
consider how to extend the results previously re-
stricted to conjugated hydrocarbons to heteroconju-
gated systems.

IV. Hidden Treasures of Kekulé Valence
Structures

Science is to see what others have seen and to
think what others have not thought.

Albert Szent-Gyorgi204

Kekulé valence structures have been around for
over 135 years. They have received considerable
attention, particularly in the early developments of
the VB method from about 1935 to 1960, and yet
conjugated circuits remained a “hidden treasure”. It
was only with the revival of chemical graph theory
in the mid-1960s that topological and combinatorial
features of chemical structure received a fresh at-
tention.205 This revival of chemical graph theory owes

the most to Professor A. T. Balaban, who almost
single-handedly stirred interest in the forgotten
chemical graph theory of Cayley, Sylvester, and other
early pioneers.206 The revival of interest in Hückel
MO and Kekulé valence structures eventually led to
the discovery of conjugated circuits.

In Figure 15 we show all 14 Kekulé valence
structures of benzo[ghi]perylene. A close look at the
Kekulé valence structures of benzo[ghi]perylene shows
that, while some are similar (and some are sym-
metry-related), others are visibly different. In par-
ticular, one can notice a difference between the first
Kekulé structure, in which five rings out of six, when
looked at in isolation, have the Kekulé valence
structure of benzene, and the last structure, in which
only one ring has the Kekulé valence structure of
benzene. The first structure (structure A in Figure
15), which is the Kekulé valence structure with the
maximal number of Kekulé benzene rings, is known
as the Fries structure.5,6 In the pre-quantum chem-

Figure 12. A selection of giant benzenoids described by Müllen and co-workers.174-177
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istry era, it was viewed by Fries as the most impor-
tant Kekulé structure of a conjugated polycyclic
compound. In analogy, one may refer to the last
Kekulé structure of benzo[ghi]perylene (structure N
in Figure 15), which has the smallest number of
Kekulé benzene rings, as the anti-Fries structure.207

We show in Figure 16, for a selection of benzenoid
hydrocarbons, their anti-Fries valence structures.

A. Conjugated Circuits
It need be borne in mind that the nature is far
too vast to hope to chart its expanse in complete
detail. It is therefore important that every task
undertaken should be selected because it is likely
to tell something about a wide area, rather than
merely the immediate neighborhood.

E. B. Wilson208

If different Kekulé structures carry different
weights, then the question is how different are the
three Kekulé structures of naphthalene? A close look
at the three Kekulé valence structures of naphtha-
lene (Figure 17) has led to the “discovery” of conju-
gated circuits. As one can see, the central Kekulé
structure of naphthalene has two rings with Kekulé
benzene formulas, while the other two structures
(which are symmetry-related) have just one such
ring. Rings with two CC double and four CC single
bonds lack a regular alternation of CC single and CC
double bonds, typical of benzene. However, if we
combine the two CC double bonds of such rings with
the three CC double bonds of the adjacent ring, we
obtain a circuit along the periphery of naphthalene
which has a regular alternation of CC single and CC
double bonds. We refer to circuits with a regular
alternation of CC single and CC double bonds as
conjugated circuits. Hence,

Definition: Conjugated circuits are those circuits
within an individual Kekulé valence structure in
which there is a regular alternation of CC double and
CC single bonds.

Conjugated circuits are necessarily even, having
either 4n + 2 or 4n carbon atoms. As we can see from
Figure 17, the central Kekulé structure of naphtha-
lene has two conjugated circuits having three CC
double bonds (or involving six carbon atoms), and the
other two Kekulé valence structures have one con-
jugated circuit having three CC double bonds and one
conjugated circuit having five CC double bonds (or
10 carbon atoms).

Figure 13. Hydrocarbons showing a great variation in
geometry, including spiropentane C5H8 (1), cubane C8H8
(3), bullvalene C10H10 (4), adamantane C10H16 (5), prizmane
C6H6 (6), diadamantane C18H24 (7), and trypticene C20H14
(9).

Figure 14. A selection of larger hydrocarbons that show
a variety of physico-chemical properties.
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In the first column of Figure 18 we show the five
Kekulé valence structures of phenanthrene, and in
each row we depict all its conjugated circuits, which
include also combinations of disjoint conjugated
circuits. The reason for considering disjoint conju-
gated circuits follows from an observation that oth-
erwise some Kekulé valence structures would have
more conjugated circuits than others. Thus, while the
first four Kekulé structures of phenanthrene have
three conjugated circuits each, if we do not count the
disjoint combinations shown in the last column of the
first four rows, the last Kekulé structure would have

one conjugated circuit more. One can easily recognize
that the fourth conjugated circuit of the last Kekulé
structure of phenanthrene can be obtained as a linear
combination of the other three conjugated circuits.
If we use symbols R1, R2, and R3 for the conjugated
circuits of 6, 10, and 14 carbon atoms, we can express
the last conjugated circuit as a superposition: R3 )
2R2 - R1. If we allow this combination to be counted,
then to be consistent we have to admit combinations
of disjoint conjugated circuits, which are, from the
mathematical point of view, similarly given as a
linear combination of smaller conjugated circuits.
Hence, one can differentiate linearly independent
conjugated circuits, the number of which is given by
the number of fused benzene rings, and all conju-
gated circuits, which include combinations of disjoint
conjugated circuits. The number of all conjugated
circuits is K - 1,209 where K is the number of Kekulé
valence structures for the molecule considered.

In Figure 19 we show all 13 conjugated circuits for
one of the Kekulé structures of benzo[ghi]perylene.
It is interesting to observe a fact that remained
unknown until conjugated circuits were recognized
as important components of Kekulé valence struc-
tures: one can construct the remaining 13 Kekulé
valence structures of benzo[ghi]perylene, one by one,
from this single Kekulé structure, and in general one
can, after identifying all conjugated circuits, con-
struct all the remaining Kekulé valence structures
from any single Kekulé valence structure. To obtain
the remaining 13 Kekulé valence structures of benzo-
[ghi]perylene, consider separately each of the 13
conjugated circuits. If within any of these conjugated
circuits (or sets of disjoint conjugated circuits) one
replaces all CC double bonds by CC single bonds and
vice versa but leaves intact the bond type of all the
remaining CC bonds which are outside the conju-
gated circuit (or circuits), one obtains a different,
missing Kekulé valence structure.209 Hence, a single
Kekulé valence structure contains information on all
the Kekulé valence structures of a molecule!

Table 8. Selection of Hydrocarbons Having Interesting Properties

formula name property

(S)-C10H160 (S)-limonene smells of lemons
(R)-C10H16 (R)-limonene smells of oranges
C12H10 acenaphthene dye intermediate; insecticide; fungicide
C15H18 guaiazulene anti-inflammatory; anti-ulcerative
C15H24 (+)-(R)-copaene (sesquiterpene) male medfly strong attractant
C19H32 tridecylbenzene detergent; forms stable foam in the presence of fat
C19H40 pristane lubricant; anti-corrosion agent
C22H14 pentacene large crystal semiconductor
C21H16 3-methylcholanthrene experimental use in cancer research
C23H46 muscalure sex pheromone
C30H50 squalene oil, agreeable odor; bactericide
C30H62 squalane lubricant; transformer oil; perfume fixative; skin lubricant
C40H51 lycopene carotenoid occurring in ripe fruit
C40H56 R-carotene vitamin A precursor
C40H68 phytofluene polyene hydrocarbon widespread in the vegetable kingdom
C150H186 hexabenzocoronene derivative liquid crystal (component for photovoltaic films)

polymantanes new material: hydrocarbons built from fused adamantine units
acenaphthofluoranthenes conductive ladder polymer
cis-polyisoprene natural rubber
s[CH2C(CH3)dCHCH2]ns
isoprenesisobutylene copolymer synthetic rubber
styrenesbutadiene copolymer
ethylenespropylene copolymer

Figure 15. All 14 Kekulé valence structures of benzo[ghi]-
perylene.
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The first paper on conjugated circuits appeared in
Chemical Physics Letters, written by this author,
followed by a paper in Tetrahedron in which a larger
number of benzenoid conjugated hydrocarbons were
considered, and a paper in the Journal of the Ameri-
can Chemical Society in which aromaticity was
defined in terms of 4n + 2 conjugated circuits. Gomes
apparently made an independent discovery of con-
jugated circuits in his Ph.D. thesis, as has been
pointed out in a paper on a quasi-topological method
for the calculation of relative ring-current intensities
in polycyclic conjugated hydrocarbons.210 Gomes, in
his thesis, used conjugated circuits and calculated
their contributions to NMR chemical shifts, and later

revisited the same topic, discussing the additivity of
properties of polycyclic hydrocarbons over conjugated
circuits.211 However, in his thesis, Gomes cited the
first paper on conjugated circuits already published
in Chemical Physics Letters, which of course means
that conjugated circuits were not discovered inde-
pendently by him. In an article on “Graph Theory and
Theoretical Chemistry”, Balaban added a note: “The
importance of conjugated circuits was recognized,
simultaneously with, and independently from, Ran-
dić, by Gomes and Mallion.” 212 In another paper
Gutman and El-Basil have a note, “The Theory of
conjugated circuits has been independently developed
by Gomes”,213 and then they cite three papers by
Gomes from 1979, 1980, and 1981 (underline in
quotation added by M.R.).

To the best of my knowledge, Mallion never made
any claims about the discovery of conjugated circuits.
Also to the best of my knowledge, Gomes used
conjugated circuits (for calculation of ring currents)
but made no claims about development of the model.

Figure 16. Anti-Fries valence structures for a selection of benzenoid hydrocarbons.

Figure 17. The three Kekulé valence structures of naph-
thalene and their decomposition in conjugated circuits.

Figure 18. Decomposition of the five Kekulé valence structures of phenanthrene into conjugated circuits (including
combinations of disjoint conjugated circuits).
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This does not negate that he may have come across
conjugated circuits independently, as it is also con-
ceivable that, besides Gomes, others may have come
close to the idea of conjugated circuits. In this context,
it is interesting to mention that Linus Pauling found
conjugated circuits bearing semblance to his work on
susceptibility of benzenoid hydrocarbons, as he wrote
in a private letter of 24 March 1976 to this author:

Dear Professor Randic:
I was pleased to receive your letter and your

papers, which I have examined with interest. I
agree with you that it is better to make rather
simple calculations, such as yours, than the very
complicated ones.

Your work on conjugated circuits reminds me
of a paper that I wrote on the diamagnetic
anisotropy of aromatic molecules, Journal of
Chemical Physics 4, 673 (1936). You might want
to look at this paper, which was the first
theoretical discussion of anisotropy of diamag-
netic susceptibility of aromatic molecules.

Again let me thank you for writing to me.
Sincerely,
Linus Pauling

Gutman and Cyvin have pointed out that the idea
of symmetric difference known to mathematicians is
closely related to conjugated circuits (vide infra).214

The questions of priority have always been painful
and controversial in the sciences, as we have seen
from the disputes over the invention of calculus
between followers of Newton and Leibniz (see the
biographical note on Cayley). Sometimes it is not
even so important who first introduced a novel idea,
but who developed the idea to a stage of maturation.
For instance, the notion of the aromatic π-sextet is
originally attributed to Armitt and Robinson,215 but
it was Clar who developed the model and deserves

the credit for the idea of describing local variations
in benzenoid hydrocarbons by aromatic π-sextet and
migrating π-sextets. Moreover, it appears that Rob-
inson was not very enthusiastic about the “aromatic
sextets” described by Clar, although Clar refers to
them in his booklet, The Aromatic Sextet, as Robin-
son’s aromatic sextet.216 It also appears that Robinson
completely abandoned the notion of aromatic π-sex-
tet. For some comments on the aromatic π-sextet, see
the biographical note on Clar at the end of this
article.

According to the statement made by Gutman and
Cyvin in their book, Introduction to the Theory of
Benzenoid Hydrocarbons, on p 80 in a section entitled
“The Conjugated Circuit Model”: “The Theory out-
lined in this chapter has to be associated with the
name of Milan Randić who discovered it and eventu-
ally elaborated it and applied it to numerous classes
of conjugated molecules.” 452

In mathematics, conjugated circuits appeared as
a result of an operation called symmetric difference
between a pair of 1-factors, that is, a pair of Kekulé
valence structures in the case of benzenoid graphs.
Symmetric difference is a collection of edges in a
graph that is common to two 1-factors. As discussed
by Gutman and Cyvin, cycles in symmetric difference
are known as alternating cycles. In mathematics in
general, one considers all sorts of graphs, non-planar
graphs included, and the concept of alternating cycles
has never emerged as being of particular importance
or interest.

B. Innate Degree of Freedom

... it is almost always worthwhile to explore a
region which is really new. Unexpected results
can generally be relied upon under these cir-
cumstances.

E. Bright Wilson208

There is an additional “hidden treasure” in Kekulé
valence structures worthy of the attention of chem-
ists. Consider again the 14 Kekulé valence structures
of benzo[ghi]perylene, and let us focus attention on
the last Kekulé valence structure shown in Figure
15. Organic chemists immediately recognize this
particular Kekulé valence structure as “unimportant”
and not very representative of the molecule. What
typifies this particular Kekulé structure is not only
that many of its rings have only two CC double bonds
but that, in this particular case, by selecting a single
CC bond, the location of all other CC double bonds
may be determined. It is easy to verify that, if we
assign the CC double bond type to the central CC
bond of the “bay” region of benzo[ghi]perylene, the
locations of all the other CC double bonds follow. In
the other 13 Kekulé valence structures there is no
such unique CC bond that determines the bond type
for all the remaining CC bonds, but there may be two
or more bonds which, when assigned CC double bond
type, allow the bond types for the remaining CC
bonds to be determined. This observation has led to
the concept of the “innate degree of freedom”, or
shortly, “degree of freedom” (df) of a Kekulé valence
structure.217-221

Figure 19. All conjugated circuits for one of the Kekulé
structures of benzo[ghi]perylene.
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Definition: The degree of freedom of a Kekulé
valence structure is given by the smallest number of
CC bonds which, when assigned CdC type, determine
the CC bond types for all the remaining CC bonds.

Hence, in the case of benzo[ghi]perylene, the last (the
anti-Fries) Kekulé valence structure of has df ) 1.
The reader may try to determine the df for the other
Kekulé valence structures of benzo[ghi]perylene and
will immediately see that this may not be an easy
task. In the next paragraph, we have listed df values
for the remaining Kekulé structures of benzo[ghi]-
perylene to assist those who tried to find them on
their own to verify their findings.

In some cases finding the df is simple. It is not
difficult to see that all Kekulé structures of linearly
fused benzenoid hydrocarbons s naphthalene, an-
thracene, tetracene, pentacene, etc. s have df ) 1.
It suffices to assign CdC type to any of the “vertical”
CC bonds in such molecules, and the bond types of
all other CC bonds will be determined. Of the five
Kekulé valence structures in phenanthrene shown
in Figure 18, only the last (anti-Fries) structure has
df ) 1. The remaining four Kekulé structures of
phenanthrene have df ) 2, because a selection of
CdC bond in one of the terminal benzene rings can
in no way influence the selection of CdC bonds in
the other terminal ring. In Figure 20 we have
illustrated some Kekulé valence structures having
different df values for a selection of small benzenoid
hydrocarbons.

To determine the df for a Kekulé valence structure
of a benzenoid hydrocarbon in general could be quite
tedious and error-prone. For example, in ref 219,
where only relatively small benzenoids were consid-
ered, an erroneous df value for one of the Kekulé
structures of pyrenopyrene was reported (for the
correct value, see Appendix 3 at the end of this
review). Of the 14 Kekulé valence structures of benzo-
[ghi]perylene shown in Figure 15, the first 8 (struc-
tures A-H) have df ) 3, the next five (structures
I-M) have df ) 2, and the last structure (N), as
already mentioned, has df ) 1. To find the df requires
a rather careful examination of the Kekulé valence
structure. The innate degree of freedom df is not
simply related to the number of different conjugated
circuits, although, as will be seen later, there is an
intimate relationship between the two concepts.
Observe that the first eight Kekulé structures have
different numbers of R1 conjugated circuits, and the
same is true for the next five Kekulé structures.
Moreover, structures I and J, which have df ) 2, have
three R1 conjugated circuits, just as the structures
E-H, which have df ) 3. Hence, the df cannot be
determined from the count of conjugated circuits R1.

However, if we pay attention only to disjoint
conjugated circuits, a close look at the Kekulé valence
structures of benzo[ghi]perylene shows that struc-
tures A-H have three disjoint R1 conjugated circuits,
while valence structures I-M have two disjoint R1
conjugated circuits. At the same time, structures
A-H have df ) 3, and structures I-M have df ) 2.
It is tempting, then, to expect that the number of
disjoint R1 conjugated circuits in a Kekulé valence
structure determines its degree of freedom.87 This can
be immediately understood, because if one selects a
distribution of CdC and CsC bonds in one such ring,
then by virtue of the fact that the other R1 rings are
disjoint, the selection of CC bond type in other rings
cannot be influenced. This would agree with the
findings of Hansen and Zheng,222 who have proved
for cata-condensed benzenoids a theorem which states
that the degree of freedom for such structures is
given by the number of disjoint Kekulé benzene rings
that one can write for the structure.

If one wants to generalize such findings for peri-
condensed benzenoids, one has to observe that, in
peri-condensed systems, disjoint conjugated circuits
of different size may occur. Hence, the formulation
based on “disjoint Kekulé benzene rings” need not
apply because the number of disjoint Kekulé benzene
ring structures can be lower than the number of
disjoint conjugated circuits. This is illustrated on one
the Kekulé valence structures of both coronene and
benzo[a]coronene in Figure 21. In both cases, there
is only one R1 conjugated circuit. Hence, there is only
one “disjoint Kekulé benzene ring”, but the two
Kekulé valence structure have df ) 2. The choice of
two CC bonds that determined the positions of all
the remaining CC double bonds need not be unique.
For example, one can select as CC double bonds the
two “vertical” CdC bonds in the leftmost benzene
ring, after which the bond type for all remaining CC
bonds is determined, but equally one can select
CdC in the central ring, an adjacent benzene ring.

Figure 20. A selection of Kekulé valence structures of
several small benzenoid hydrocarbons and the correspond-
ing innate degree of freedom, df.
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Clearly, the location of CC double bonds in the
central ring cannot determine the locations of CC
double bonds on the molecular periphery, or in
general the location of CC bonds in one conjugated
circuit cannot determine the location of CdC bonds
in any other disjoint conjugated circuit. It remains
to be proved that the number of disjoint conjugated
circuits (which need not be of the same size) equals
the number of degrees of freedom of a Kekulé valence
structure. Before the proof is offered, we have to
formulate our expectations as a conjecture:

Conjecture: The maximal number of disjoint con-
jugated circuits equals the innate degree of freedom,
df, of a Kekulé valence structure.

Hence, the count of disjoint R1 circuits does not
necessary give the correct answer for df. The maxi-
mal number of disjoint (independent) conjugated
circuits, which could be of different sizes, determines
the innate degree of freedom of the Kekulé valence
structure of a benzenoid hydrocarbon.87 We will see
later that the innate degree of freedom, or more
correctly the maximal number of disjoint conjugated
circuits, was the “missing link” that leads to math-

ematical characterization of Clar’s valence structures
and contributes to solving the “inverse problem” for
Clar structures.

C. Clar Structures
We can view Clar structures formally also as a

“hidden treasure” of Kekulé valence structures, be-
cause each Clar structure can be viewed as a super-
position of a subset of Kekulé valence structures. For
a given Clar structure, it is not difficult to derive the
subset of Kekulé valence structures that, upon su-
perposition, make the Clar structure. This is il-
lustrated in Figure 22 for the first Clar structure of
chrysene shown in Figure 1, which has two π-aro-
matic sextets. Each π-sextet can be decomposed into
two Kekulé valence structures of the benzene ring.
Thus, a Clar structure having two sextets is built
from four Kekulé valence structures, and in general
a Clar structure having k π-sextets is built from 2k

Kekulé valence structures. The opposite process, that
of finding in advance which k Kekulé valence struc-
tures among all K structures of a benzenoid hydro-
carbon participate in superposition to yield a Clar
structure, represents the “inverse problem”. The
inverse problem, as is typical for inverse problems
in general, is more difficult to solve. In the case of
benzo[ghi]perylene, the inverse problem consists of
finding structural criteria, or a criterion, which will
enable one to select 8 out of the 14 Kekulé valence
structures shown in Figure 15 as those needed for
construction of the Clar structure of benzo[ghi]-
perylene.

The importance of the inverse problem of the Clar
structures lies not only in the possibility of fully
mathematically characterizing Clar structures, which
are essentially introduced through geometrical con-
siderations; even more significantly, solving this
problem may allow us, for the first time, to extend
the notion of Clar structures to non-benzenoid com-

Figure 21. Disjoint conjugated circuits of different size,
illustrated on one of the Kekulé valence structures of
coronene and benzo[a]coronene.

Figure 22. Decomposition of one of the Clar structures of chrysene into the underlying Kekulé valence structures.
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pounds beyond biphenylene for which already Clar
depicted structures with π-aromatic sextets, includ-
ing fullerenes!

V. Graph Theoretical Approach to Chemical
Structure

It may not be wholly without interest to some of
the readers ... to be made acquainted with an
analogy that has recently forcibly impressed me
between branches of human knowledge appar-
ently so dissimilar as modern chemistry and
modern algebra ... I hardly ever take up exceed-
ingly valuable ... Notes for Chemical Students,
which are drawn up exclusively on the basis of
Kekulé’s exquisite conception of valence, without
deriving suggestions for new research in the
theory of algebraic forms.

James J. Sylvester (1814-1897)223

As noted in the biographical notes at the end of
this review, J. J. Sylvester was a mathematician who
was particularly interested in the connection between
algebra and chemistry. This adds some weight and
significance to the above quotation and his fascina-
tion with Kekulé valence structures. His work was
published in mathematical journals, and he was
addressing as “readers” mathematicians, of course.
Graph theory is a branch of discrete mathematics
which considers discrete objects and studies com-
bined topological and combinatorial properties of such
objects. (For introductory books, see refs 224 and 225;
for textbooks, see refs 102, 226, and 227; for an
advanced monograph, see ref 228; for graph theoreti-
cal terminology, see ref 229; for historical develop-
ment, see ref 230). Although the origin of graph
theory has been traced to Euler231 and the year 1736,
the first mathematical book on graph theory ap-
peared 200 years later, just before the World War
II, in 1936. It was written in German by D. König,232

a professor at the University of Budapest (Hungary).
Graph theory should not be viewed as a branch of
topology (which is concerned with the properties of
neighborhoods and has no metrics) or as a branch of
combinatorics (which is concerned with the properties
of permutations and combinations). Graph theory is
a part of discrete mathematics, known before 1920
by the clumsy label of “topological and combinatorial
mathematics”, which is concerned with the topologi-
cal and combinatorial properties of discrete objects.
As already said, the main novelty of graph theory,
in distinction to topology and combinatorics, is that
for graphs one can define a metric, of which we take
advantage in applications to chemistry.

A. Metric

A graph is mathematically defined as a set of
elements (called vertices) and a set of binary relations
(called edges) which supports metrics; hence, the
concept of distance holds. The following are the
axioms that define the distance:

Most often, the number of edges between the vertices
defines the distance between two vertices in a graph.
However, whenever the axioms on metric are satis-
fied, one can speak of distance. Hence, there are
alternative distance measures that have been con-
sidered for graphs. For example, if one considers the
edges of a polycyclic graph to be unit resistors, then
because the Kirchhoff laws satisfy the axioms on
distance, one can speak of the “resistance distance”.233

For additional illustrations of the use of metrics on
graphs, see works by Klein and collaborators,234-241

Skorobogatov and Dobrynin,242 and others.243-246

B. Chemical Graphs
The most common graphs in chemical graph theory

are molecular graphs with atoms as vertices and
edges as bonds. However, there are other types of
graphs, including other types of molecular graphs,
that are of interest in chemistry, and these are listed
in Table 9. If as vertices we consider bonds and as
edges we consider incidence of bonds, we obtain the
so-called line graphs. E. Estrada and co-workers247-251

found that the connectivity indices of line graphs
might offer better correlation between molecules and
some of their physico-chemical properties than would
regressions based on similar descriptors derived
directly from molecular graphs in which atoms are
vertices and bonds are edges. Related to line graphs
are factor graphs, in which CC double bonds in the
Kekulé valence structure are assumed as vertices and
adjacent CC bonds are those separated by CC single
bonds.252-258 Vertices in chemical graphs can repre-
sent molecules, isomers, or Kekulé structures, while
edges may represent paths of chemical reactions,
degenerate rearrangements, or the “resonance” be-
tween Kekulé valence structures, respectively. Clearly,
neither are graphs just simplified molecular dia-
grams nor is “chemical graph theory” just a synonym
for HMO theory!

C. Isospectral Graphs
Apparently, much of the early misunderstanding

about and hostility toward chemical graph theory
was caused by erroneous identification of chemical
graph theory with the Hückel molecular orbital
method. Although part of graph theory, the so-called
spectral theory,259-261 has substantial overlap with
HMO theory if one restricts attention to eigenvalues
of the adjacency matrix, even in this area there were
many novel results of chemical graph theory which
were unknown in HMO theory. For example, Balaban
and Harary pointed out that the characteristic poly-
nomial does not uniquely determine the connectivity
of a molecule;262 that is, there are molecular graphs

D(x,y) > 0
Distance is positive (D(x,y) ) 0 only if x ) y).

D(x,y) ) D(y,x)
Distance does not depend on direction.

D(x,y) + D(y,z) g D(x,z)
Triangular inequality: direct connection

is the shortest distance.
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that will have all eigenvalues equal. This was first
found by Sinogowitz and was published by Collatz
in 1957263 (as Collatz reported, this discovery re-
mained unpublished but was found earlier by Si-
nogowitz, who perished during World War II). Fisher
and others264-266 reported on several graphs that have
all eigenvalues equal, but this interesting mathemati-
cal aspect that has bearing on the HMO theory was
totally unknown to chemists while HMO was the
theory of the day. It was only in 1973 that Živković267

found, by browsing through the Dictionary of π-Elec-
tron Calculations, by Coulson and Streitwieser,268

that 1,4-divinylbenzene and 2-phenylbutadiene (sepa-
rated by only few pages in the book!) have all 10
eigenvalues identical. The corresponding molecular
graphs (with hydrogen atoms suppressed, as is
customary in presenting graphs in organic chemistry)
are illustrated in Figure 23. Numerous additional
isospectral graphs have since been constructed.262-286

Isospectral graphs are important in connection
with the “inverse problem” that emerges in various
branches of science. Kac,287 in an article, “Can You
Hear the Shape of a Drum?”, was among the first to
show that, in classical physics, simply knowing the
vibrational spectra associated with an instrument
does not allow one to reconstruct the shape of the
source instrument, that is, the precise shape of the
vibrating drum. In other words, drums of different
shapes may produce the same sound. The occurrence

of isospectral graphs has shown that the inverse
problem for graphs cannot be solved knowing just the
spectra, or in the case of π-electron systems knowing
just the HMO energy levels. At least this is the case
for a simplified Hamiltonian such as is used in the
HMO method. Fisher,288 in an article, “On Hearing
the Shape of a Drum”, extended the considerations
of Kac to discrete “drums” (i.e., polycyclic graphs).

That different graphs can have identical spectra
(i.e., eigenvalues) has been known for some time in
mathematical literature263,266 and in physics.264,265

Moreover, it was shown that such graphs are not as
rare as initially thought. Schwenk289 has shown for
trees (acyclic graphs) that as the size of the graphs
increases, the number of isospectral graphs increases,
and in the limit of infinitely large graphs, almost all
graphs have isospectral partners. In Figure 24 are

Table 9. Graphs of Interest in Chemistry: The First Column Shows What the Vertices Represent, and the
Second Column Shows the Relationship

vertices edges author(s) comment

Intramolecular Graphs
atoms bonds Cayley

Silvester
edges incidence line graphs
CdC bonds adjacency Joella factor graphs

El-Basil
carbons and hydrogens CC adjacency and HH gauche sites Randić
polygonal faces adjacency duals

Intermolecular Graphs
molecule degenerate isomerization Balaban vertex and edge transitive graphs
Kekulé structures interactions Herndon
Kekulé structure resonance Gründler median graphs

Randić
benzene rings resonance Gutman
isomers path length adjacency Randić

Embedded Graphs
atoms bonds part of diamond lattice
carbon atoms CC bonds part of graphite lattice
benzene rings fusion Smith

Balaban
benzene rings center common CC bond Balaban dualist graph
DNA bases sequence adjacency Nandy
proteins in a gel abundance adjacency Randić zigzag curve
proteins in a gel mass and charge dominance Randić partial ordering
structures/molecules clustering hierarchical clustering graphs

Special Graphs
caterpillar trees branches of length one
Fibonacci graphs families of benzenoids
Sachs graphs Sachs disjoint edges and cyclic subgraphs
rooted trees single vertex emphasized

Book-Keeping
graph symmetry operations Cayley
configurations interaction Paldus

Matsen
Shavitt

Figure 23. Isospectral pair 1,4-divinylbenzene and 2-phen-
ylbutadiene, which have all their HMO eigenvalues identi-
cal.267
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shown a few additional isospectral graphs to il-
lustrate that this may occur even for small systems.
The last pair of graphs in Figure 24 represents the
smallest isospectral multi-trees, i.e., acyclic graphs
with one edge having a different weight (simulating,
for instance, a CC double bond). Unfortunately, these
results were found at the time when the HMO
method was, for the most part, already only of
historical and mostly educational interest, and no
longer a viable research tool. Nevertheless, one
should give due credit to this part of chemical graph
theory for leading to the discovery of a number of
interesting aspects of the HMO model that were
overlooked at the time when the HMO approach was
widely used.

There is yet another caveat concerning isospectral
graphs that is worth mentioning. Some “noise” has
been made by Heilbronner and Jones290 to demon-
strate that, while isospectral graphs may be of some
mathematical interest, they are not relevant for
chemistry. In other words, the HMO model is no
longer a viable model for chemistry. They displayed
the ionization potentials of the isospectral pair 1,4-
divinylbenzene and 2-phenylbutadiene that show no
similarity with each other. If the concept of isospec-
trality were relevant, and HMO theory correct, then
such molecules should show identical spectra. How-
ever, if the objective of Heilbronner and Jones was
to show that the HMO model is not a useful model
to discuss molecular spectra and ionization potential,
it would suffice to show HMO computations just for
a single molecule, almost any single molecule! As
Hermann291 described, when it comes to character-
ization of molecules, the isospectrality is an artifact
of the neglect of hydrogen atoms. More realistic
descriptions of chemical structure have led, in all
cases considered, to different spectra for different
molecules. Hermann concludes that, “Hence using an
appropriate translation of the chemical structure into
topological matrix, the isospectral artifacts are of no
relevance any longer and the topological matrices and
their invariants can be meaningful tools for investi-
gating chemical structures in physicochemistry.” 291

It is interesting to point out, as first observed by
Balasubramanian292 for fullerenes having 90 carbon
atoms or less, and later reported by Balaban et al.293

for all 1812 fullerene isomers of C60, that none of
them are isospectral. Hence, while isospectral graphs
are common among acyclic structures,289 apparently
they are not so common among highly cyclic cages
representing possible carbon skeletons of fullerenes.

D. Embedded Graphs
In chemical applications of graph theory, besides

“ordinary” graphs that have no fixed geometry, one
may also consider graphs that are rigidly embedded
in either 2-D space or 3-D space. As a consequence,
rigidly embedded graphs have fixed geometry. For a
list of topics in which embedded graphs have played
an important role in chemistry, see Table 10. Balaban
and Harary294 in 1968 considered enumeration of
cata-condensed benzenoid hydrocarbons and intro-
duced the so-called “dualist” graphs, which are
constructed by considering as the vertices the centers
of individual benzene ring and as the edges the lines
connecting vertices that belong to rings having a
common CC bond. The fixed geometry of dualist
graphs is determined by the geometry of the underly-
ing benzenoid hydrocarbons. The term “dualist” was
used to make a distinction with the concept of a dual
of a graph, or a dual of a polyhedron, terminology
already known and used in mathematics, which is
obtained by representing each face of a planar graph
or polyhedron by a vertex and connecting vertices
belonging to a face with a common edge.102 Dualist
graphs represent one of the simplest embedded
graphs having fixed bond lengths of equal length and
fixed angles. As early as 1961, Smith had constructed
such graphs but merely used them as a simplified
notation for polycyclic benzenoid hydrocarbons.295 In
Figure 25 we show all dualist trees (with fixed angles
of 120° and 180°) for cata-condensed benzenoids with
five fused benzene rings. For additional illustrations
on the use of dualist graphs, see refs 296-299. The
dualist graphs in which vertices have two “colors”
have been used for construction of graph polynomials
that count either conjugated circuits or the aromatic
π-sextets of Clar.300

In other applications, embedded graphs have been
found useful for numerical characterization of
folded proteins,301,302 for characterization of DNA
sequences,303-312 and for characterization of proteom-
ics maps.313-321 On the other hand, the diagrams that
pictorially represent partial ordering (vide infra),
which arise when one compares objects that are char-
acterized by two or more variables, can also be em-
bedded. Such an embedding of partial ordering over
the proteomics map offers an alternative numerical
characterization of cell proteomes.319,320 In a similar
way, by constructing partial ordering of isomers, one
arrives at the “Periodic Table of Isomers”.322-326 In
such a table, isomers are ordered with respect to the
number of paths of length two and paths of length
three (isomers necessarily have the same paths of
length one, that is, the number of bonds).

Other structural invariants, besides paths, can be
used for construction of embedded graphs, which may
allow one to recognize regularities in physico-chemi-
cal data among isomers. Thus, for example, Diudea
and co-workers327 used the higher order walks, rather

Figure 24. Additional isospectral graphs, including the
smallest isospectral multi-trees.269-286
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than paths, and obtained a regular pattern showing
variations in the boiling points for octanes. Dias
constructed the “Table of Conjugated Hydrocarbons”
based on variations of critical structural elements for
fused benzenoid hydrocarbons.328-336 Finally, embed-
ded “resonance” graphs, in which vertices correspond
to various Kekulé valence structures of a benzenoid
hydrocarbon and edges connect those valence struc-
tures which differ in sites of three CC double bonds
within a single benzene ring only, offer an alternative
graphical representation of benzenoids.337-339

E. Partial Ordering
We ought to say more about partial ordering as

theoretical tool, because partial ordering apparently

is not so well known among chemists. As already
mentioned, when objects to be compared are charac-
terized by two (or more) properties, as a rule they
cannot be simply ordered. Consider a set of objects
Xk characterized by two properties, ak and bk. Two
objects Xi and Xj can be ordered only if ai > aj and bi

> bj, in which case we say that Xi dominates Xj, or Xj

is dominated by Xi. For example, in proteomics, map
proteins from cells of the same kind or a tissue are
separated by the charge and by the mass (electro-
phoretically and chromatographically, respectively).
While there are many proteins that have greater
charge and greater mass than others, there are even
more cases in which a protein having a greater
charge has a smaller mass than another protein, and
vice versa. Partial ordering340-345 seeks all possible
sequences of subsets of objects for which simple
ordering holds, that is, all subsets for which ai > aj

and bi > bj. The mathematical foundation for partial
ordering can be traced to the Scottish mathematician
Muirhead, who 100 years ago was interested in
comparing arithmetic and geometric sequences.346-348

His work was later generalized by Karamata.349 The
result of an analysis of partial ordering can be
presented pictorially as a hierarchical diagram (or
directed graph) in which only the relative positioning
of objects that preserve hierarchy is relevant.

Partial ordering, particularly the order relation
between sets of non-negative numbers with a con-
stant sum, has found significant applications in
mathematics, physics, and chemistry.350-355 It has
also been used in quantitative structure-activity
relationship (QSAR) studies for identification of
pharmacophores.356-359 The reason for mentioning
partial ordering in an article on aromaticity is that
a view was expressed that the concept of aromaticity

Table 10. Embedded Graphs (in 2-D or 3-D Space) Arising in Applications of Graph Theory to Chemistry and
Biochemistry

topic author(s) year ref

simplified representation of benzenoids Smith 1961 a
enumeration of conformers Balaban and Harary 1968 b
partial ordering of isomer Randić and Wilkins 1979 c
reduced graphs Jerman-Blažič and Trinajstić 1982 d
2-D graphical representation of DNA Hamory 1989 e

Nandy 1994 f
Leong and Mogenthaler 1995 g

chain conformations on graphite lattice Randić, DeAlba, and Kleiner 1995 h
protein modeling Li, Helling, Tang, and Wingreen 1996 i
folded proteins Randić and Krilov 1996 j
line-adjacency graphs Randić, Vračko, Novič, and Basak 2000 k
3-D graphical representation of DNA Randić, Vračko, Nandy, and Basak 2000 l
2-D non-overlapping graphical DNA Guo, Randić, and Basak 2001 m
3-D proteomics Randić, Zupan, and Novič 2001 n
2-D graphical Randić, Vračko, Lerš, and Plavšić 2003 o
partial ordering of protein gel spots Randić 2002 p
4-D representation of DNA Randić and Balaban 2003 q
DNA cluster graph Bajzer, Randić, Plavšić, and Basak 2003 r
2-D compact representation of DNA Randić, Vračko, Zupan, and Novič 2003 s

a Smith, F. T. J. Chem. Phys. 1961, 34, 793. b Balaban, A. T.; Harary, F. Tetrahedron 1968, 24, 2505. c Randić, M.; Wilkins, C.
L. Chem. Phys. Lett. 1979, 63, 332. d Džonova-Jerman-Blažič, B.; Trinajstić, N. Comput. Chem. 1982, 6, 121. e Hamory, E.
BioTechniques 1989, 7, 710. f Nandy, A. Curr. Sci. 1994, 66, 309. g Leong, P. M.; Mogenthaler, S. CABIOS (Comput. Appl. Biosci.)
1995, 12, 503. h Randić, M.; DeAlba, L. M.; Kleiner, A. F. J. Chem. Inf. Comput. Sci. 1995, 12, 503. i Li, H.; Helling, R.; Tang, C.;
Wingreen, N. Science 1996, 273, 666. j Randić, M.; Krilov, G. Chem. Phys. Lett. 1996, 272, 115. k Randić, M.; Vračko, M.; Novič,
M.; Basak, S. C. MATCH 2000, 42, 181. l Randić, M.; Vračko, M.; Nandy, A.; Basak, S. C. J. Chem. Inf. Comput. Sci. 2000, 40,
1235. m Guo, X.; Randić, M.; Basak, S. C. Chem. Phys. Lett. 2001, 350, 106. n Randić, M. Zupan, J.; Novič, M. J. Chem. Inf. Comput.
Sci. 2001, 41, 1339. o Randić, M.; Vračko, M.; Lerš, N.; Plavšić, D. Chem. Phys. Lett. 2003, 368, 1. p Randic, M. Int. J. Quantum
Chem. 2002, 90, 848. q Randić, M.; Balaban, A. T. J. Chem. Inf. Comput. Sci. (in press). r Bajzer, Ž.; Randić, M.; Plavšić, D.;
Basak, S. C. J. Mol. Graphics Modell. (in press). s Randić, M.; Vračko, M.; Zupan, J.; Novič, M. Chem. Phys. Lett. (in press).

Figure 25. Dualist trees (with fixed angles of 120° and
180°) representing non-branched cata-condensed ben-
zenoids having five fused benzene rings.
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belongs to those to which partial ordering can be
applied.360 The same may be true of some of the
ambiguous concepts of Table 3, like molecular branch-
ing. In fact, Ruch and Gutman361 specifically men-
tioned molecular branching as one such concept,
although at least half a dozen various topological and
structural indices were proposed to characterize
molecular branching.325,362-368

In order to illustrate the point and, in the end, to
bring a link to characterization of aromaticity, con-
sider the following question: Which is more
branched: 2,2-dimethylhexane or 2,5-dimethylhex-
ane? The first has one branching center with four
branches, and the second has two branching centers
but each having three branches. The view of those
who consider branching as a concept belonging to
partial ordering would argue that such questions
have no meaning, that is, that the two structures are
not comparable. This view may have obtained some
support because of disagreements between the rela-
tive magnitudes of different indices of branching
assigned to the same structure. However, it is pos-
sible, just like with aromaticity, that branching can
be mathematically rigorously defined and numeri-
cally well characterized, but that we have not yet
come upon such well defined characterization of
molecular branching! Indeed, the most recent work369

on molecular branching seems to support this view
(see also ref 317 for an application). It appears
possible to justify a particular numerical character-
ization of molecular branching in terms of the de-
parture of a structure from the extreme structures,
that of the linear structure and that of the “star”
structure (i.e., a structure without any branches and
a structure with a single center having the maximal
number of branches, respectively).

It is our view that the same is true for the concept
of aromaticity, viewed as partial ordering or a vecto-
rial quantity, having many (equally valued) compo-
nents. Such views, while legitimate, in our opinion
only indicate that we have not yet found the critical
structural characteristics that define aromaticity. As
long as this is the case, the multivalued aspects (and
associated confusion about aromaticity) will continue.
But, as we will see in this article, aromaticity can be
rigorously defined, at least in the case of conjugated
hydrocarbons, by using the important but mostly
overlooked structural concept of conjugated circuits.
This will be elaborated later in the article.

VI. On Enumeration of Benzenoid Hydrocarbons

The first contributions to chemical graph theory
were concerned with enumeration of isomers. That
enumeration of isomers, and in general chemical
structures of a particular form, is difficult can be
appreciated indirectly from the fact that Cayley
reported 357 and 799 as the numbers of C12 and C13
isomers, respectively,370 but the correct numbers are
355 and 802, respectively. Henze and Blair371 in 1931
made a significant contribution to isomer enumera-
tion by developing recursion formulas for enumera-
tion of acyclic structures. An important step in the
development of graph theoretical enumerations, often

overlooked, is the work of Wheland,129 who attempted
to enumerate “excited” valence bond structures for
benzenoid hydrocarbons as early as 1935. Wheland
was the first to introduce a counting polynomial for
book-keeping of the count of valence structures of
different degrees of excitation. Finally, in 1937,
Polya372 outlined the most powerful tool, the cycle
index, for enumeration of isomers. The cycle index
takes into consideration the symmetry of objects to
be enumerated by using properties of the permuta-
tion groups.

The problem of enumeration of structures (isomers
included) is closely tied with the problem of ordering
of structures,373 the problem of orderly construction
of graphs (structures) of prescribed form,374-376 the
problem of graph isomorphism377-379 (in order to
recognize and eliminate duplicates in construction of
graphs), and of course, the problem of graph auto-
morphism (symmetry).283,380-385 Enumeration of graphs
and structures is quite a wide field in applied
mathematics, on which several reviews,386-391 includ-
ing books,392,393 have been written. Here we will only
briefly comment on enumeration and construction of
benzenoid hydrocarbons, which is a subset of graphs
that can be superimposed on a graphite lattice. The
fact that molecular graphs of benzenoids can be
viewed as rigid structures superimposed on a graph-
ite lattice allows the use of unique boundary codes394

for the construction of such graphs. Thus, it is
possible to construct, from the boundary code, the
adjacency matrix of a benzenoid.395 In this way,
construction of benzenoid graphs is transformed into
construction of acceptable peripheral codes, which by
being unique allow reconstruction of the benzenoid
hydrocarbon. Enumeration and construction of peri-
condensed benzenoid has been known to be more
difficult.392,396,397

In order to illustrate the growth of benzenoids with
the increase of the number of fused benzene rings
(n), we list below the number of cata-condensed
benzenoids (N) up to n ) 11 benzene rings, as
reported by Balaban et al.:398

This count includes benzenoid hydrocarbons that
would be unstable by having eight or more linearly
fused benzene rings. For comparison, the total num-
ber of peri-condensed benzenoids with n ) 11 ben-
zene rings is about twice the number of cata-
condensed benzenoids (N ) 41 764), to which one
should add 78 350 non-Kekuléan structures (systems
for which one cannot write Kekulé valence struc-
tures), giving a total of just over 120 000 possible
structures for analysis.

Since the first enumeration of benzenoid hydro-
carbons by computer by Balasubramanian, Kaufman,
Koski, and Balaban,397 several methods for computer-
oriented coding and enumeration of benzenoids have
been reported.399-406 With improvements of the com-
puter programs, enumeration of benzenoid hydrocar-
bons has been extended to ever larger and larger
systems. For example, Müller and collaborators
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extended their initial count of benzenoids having n
) 11 “hexagons” to those having n ) 14 hexagons
(approximately 1.5 × 107), and then to n ) 16
hexagons (approximately 3.6 × 109). This, as quoted
in ref 407, consumed about three months of uninter-
rupted central processing unit (CPU) time made
available at the Computer Center of the University
of Düsseldorf. These computer enumerations, how-
ever, do not discriminate fused systems having the
Kekulé structures from those for which no Kekulé
valence structure can be written. Thus, if these
numbers are to be of interest in chemistry, they ought
to be further filtered, and that is the reason that we
prefer to refer to such results as enumeration of
“fused hexagonal systems”, rather than condensed
benzenoids. By 1998, Caprossi and Hansen407 re-
ported the number of “fused hexagonal systems” with
21 fused rings (approximately 1.0 × 1012), and two
years later Brinkmann, Caprossi, and Hansen408

reported the number of “fused hexagonal systems”
with 24 fused rings (approximately 1.2 × 1014). Most
recently, Guttmann and co-workers409 presented a
new algorithm that allows a radical increase in the
computer enumeration of “benzenoid hydrocarbons”.
They reported the number of “benzenoids” built from
up to 35 fused benzene rings (approximately 5.8 ×
1021). This “race” in enumeration of “fused hexagonal
systems” may continue, with mathematicians appar-
ently winning over chemists. However, although it
is clear that such computations, which are rather
intricate, can be made, as the number of fused rings
increases, they appear to be becoming less and less
relevant for chemistry. The topic of enumeration of
benzenoid hydrocarbons has been extended to include

coronoid hydrocarbons, which include structures built
from fused benzene rings but which allow, in the
interior part, faces that cover the area of two and
more benzene rings, which are usually referred to as
“holes”.410

A question can be raised: When does a chemical
formula CnHm represent a benzenoid hydrocarbon?
J. R. Dias developed an algorithm for deciding when
the formula CnHm is compatible with a benzenoid
hydrocarbon. He then arranged the possible entries
in a table called the “Formula Periodic Table”, that
we have already mentioned,328-336 which is illustrated
in Table 11 for the case of benzenoid hydrocarbons.
Similar tables have been constructed for non-ben-
zenoid polycyclic hydrocarbons,411-414 for coronoid
hydrocarbons,415 etc. It should not be overlooked that
the entries in the Formula Periodic Table are all
compatible empirical formulas of polycyclc hydrocar-
bons; hence, an entry represents the totality of
isomers that have the same formula, but which
among themselves may have considerably different
properties. In that respect, the Formula Periodic
Table does not relate to individual benzenoids but to
classes of benzenoids having the same formula.
Bytautas and Klein have constructed similar For-
mula Periodic Tables for different classes of com-
pounds, such as alkanes,416,417 but also benzenoid
hydrocarbons.418 They considered various properties
of respective molecular graphs (i.e., graph invariants)
and calculated the average values for each group of
isomers having the same empirical formulas. In this
way, the Formula Periodic Table becomes a “Table
of Properties”, analogous in some respect to the
Periodic Table of Elements and the Periodic Table of

Table 11. Formula Periodic Table of Dias,328 Illustrated for the Case of Benzenoid Hydrocarbons
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Isomers, but instead of each entry corresponding to
a single element or isomer, it belongs to a class of
compounds.

A topic closely related to enumeration and con-
struction of benzenoid hydrocarbons is enumeration
and construction constrained by specific structural
requirements. An example is enumeration of ben-
zenoid hydrocarbons having a bay region. According
to Jerina and co-workers,419-421 the presence of a bay
region is critical for the carcinogenic activity of
benzenoid hydrocarbons. Let us first define a bay
region, following Balasubramanian et al.:397

Definition: A bay region is a local structural element
in benzenoid hydrocarbons which involves three ben-
zene rings arranged as in phenanthrene, of which one
has to be a terminal C6H4 ring.

Balasubramanian et al.397 and Knop and co-work-
ers422,423 developed a computer program that identify
benzenoids having bay regions. A nice feature of
these programs is that the output is presented
graphically by listing benzenoid structures so that
one can visually inspect the results. An inspection
of the results for benzenoids having six or less fused
rings shows that the number of bay regions is the
same for isoconjugated structures, like benzo[c]-
phenanthrene and chrysene, or dibenzo[aj]tetracene
and dibenzo[al]tetracene. Apparently, this has not
been incorporated in the computer programs, which
list all benzenoids having bay regions, whether
isoconjugate or not.

Definition: Two or more conjugated hydrocarbons
are isoconjugated if there is a one-to-one correspon-
dence between their Kekulé valence structures which
fully agree in the count of all their conjugated circuits.

Relationships between carcinogenity and theoreti-
cal reactivity indices in polycyclic conjugated hydro-
carbons are outside the scope of this review, but
interested readers can find some introductory mate-
rial in refs 424-427. A recent review on enumera-
tions in chemistry, which includes historical material,
an outline of enumerative methods, and reports on
the current results, can be found in A Specialist
Periodical Report: Chemical Modelling: Application
and Theory.428

VII. Kekulé Valence Structures Count

Ist es nicht eine ebenso wurdige Aufgabe der
Mathematik richtig zu zeihnem, wie die, richtig
zu rechnen.

Felix Klein (1849-1925)429

Because Kekulé valence structures are central to
the concept of conjugate circuits, we will follow with
a discussion of the properties of Kekulé valence
structures, their construction, and their enumera-
tions. We will be relatively brief and would like to
direct the attention of readers to the book by Cyvin
and Gutman79 on Kekulé structures in benzenoid
hydrocarbons, where the enumeration and properties
of benzenoid structures are discussed on over 300
pages. Kekulé valence structures have been around

for quite a while. They offer qualitative descriptions
of conjugated cyclic hydrocarbons, suggesting delo-
calization of CC single and CC double bonds. Let us
start with a mathematical definition of Kekulé
valence structure:

Definition: A Kekulé structure is a valence structure
covered by the maximal number of disjoint (double)
edges so that all vertices are incident to one of the
disjoint edges.

In the mathematical literature, a Kekulé structure
of a graph is known as 1-factor. The necessary and
sufficient conditions for a graph to have 1-factor are
known in the mathematical literature, in the case of
bipartite graphs, as a theorem of P. Hall,430 also
known as the “marriage theorem”. The necessary and
sufficient conditions for a general graph to have
1-factor are known as a theorem of W. Tutte.431 The
mathematical works of P. Hall and W. Tutte for the
most part passed unnoticed in the chemical litera-
ture, with the exception of Hosoya, who drew the
attention of chemists to them.60 However, the use of
the theorem of Tutte implies an exhaustive examina-
tion of various components of a graph, which makes
it not practical. As we will see, there are numerous
efficient algorithms not only for determining if a
molecular graph has 1-factor, but also for determin-
ing the number of 1-factors, that is, the number of
Kekulé valence structures for a molecule.

The number of Kekulé valence structures, K, is of
interest as a simple index of molecular stability. It
was Clar49 who was first to recognize that if one
cannot draw Kekulé valence structures for a poly-
cyclic system, that is, if K ) 0, then such structures
are non-existent. On the other hand, the relative
stability of benzenoids appears to grow with K; more
precisely, it is proportional to the logarithm of K.432

Thus, phenanthrene with five Kekulé structures is
more stable than anthracene, which has four Kekulé
structures. The logarithm of K was shown to offer a
fair quantitative correlation with molecular RE.
However, there are benzenoids that have the same
number of Kekulé valence structures that would be
predicted to have the same RE (for their construction,
see ref 433). Such compounds (illustrated in Figure
26) nevertheless show some variation in their RE,
as reflected in more sophisticated expressions for RE
(to be discussed later), and thus point to the limita-
tions of the simple empirical formula RE ) log K.
Clearly, among benzenoid hydrocarbons having the
same number of fused benzene rings, those having
the largest K are expected to be the most stable.
Construction of benzenoids with the maximal number
of Kekulé valence structures for a given number of
hexagons has been reported.434,435 In Figure 27 we
have illustrated benzenoids with the maximal num-
ber of Kekulé valence structures for a given number
of fused benzene rings. Among smaller benzenoid
hydrocarbons, these include phenanthrene and triph-
enylene.

For smaller benzenoid and non-benzenoid hydro-
carbons, it is not difficult to construct all the Kekulé
valence structures. Pauling himself describes the
brute force approach as follows:436
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A few minutes suffice to draw the four unexcited
structures for anthracene, the five for phenan-
threne or the six for pyrene ... an hour or two
might be needed for the 110 structures of tetra-
benzoheptacene.

Finding K for benzenoid hydrocarbons having a dozen
fused rings requires more efficient schemes. A simple
graph theoretical algorithm for construction of Kekulé
valence structures is as follows:437

(1) Construct two copies of the molecular diagram.
(2) Select a CC bond and assign to it CC double and CC

single bond type in each of the copies, respectively.
(3) Complete the assignment of bond types for neighbor-

ing bonds, if possible.
(4) Continue by constructing two copies of each not

completed molecular diagram.
(5) Go to step (2).

The slow part in enumerating Kekulé structures
by drawing Kekulé valence structures is the very
drawing of numerous copies of molecular skeletons.
This process can be accelerated by preparing blank
copies of molecular structure to which CC double
bonds are later assigned. By using such templates
of molecular skeletal forms, one can obtain all the
Kekulé valence structures of tetrabenzo[de,no,st,c1,d1]-
heptacene that Pauling mentioned in less than five
minutes, rather than an hour or longer. Incidentally,
tetrabenzo[de,no,st,c1,d1]heptacene is one of the many
benzenoid hydrocarbons prepared by Clar.438

In Figure 28 we show the initial steps of the above
algorithm, which already gave 3 of the 14 Kekulé
valence structures of benzo[ghi]perylene. If one is
interested only in K, one need not continue the above
process to exhaustion. It suffices to reduce the
original structure to smaller ones for which K values
are known. For example, in Figure 28, besides the
three Kekulé valence structures shown on the right-
hand side of the figure, we have two unfinished
fragments on the left-hand side. One of these involves
disjoint fragments of benzene (K ) 2) and naphtha-
lene (K ) 3), which results in 2 × 3, or 6, Kekulé
valence structures, and the other, the fragmentary
structure, contains phenanthrene (K ) 5). Thus, the
left-hand side of Figure 28 would generate 11 Kekulé
valence structures. This, with the already found 3
Kekulé valence structures shown on the right-hand
side of the figure, makes 14 Kekulé structures of
benzo[ghi]perylene. Chapter 8 of the book by Trina-
jstić,70 Chemical Graph Theory, gives a good review
of various schemes for obtaining K. In the book by
Trinajstić, the above approach is referred to as “the
method of fragmentation”, which appears to have
been already known to Wheland.129

We continue with outlining selected algorithms for
counting Kekulé valence structures separately for
cata-condensed and peri-condensed benzenoids.
Definition: A cata-condensed benzenoid hydrocar-
bon is a system built from fused benzene rings such
that two adjacent rings have no other common
adjacent rings.

Figure 26. Illustration of benzenoid hydrocarbons having
the same number of Kekulé valence structures.433

Figure 27. Cata-condensed benzenoid hydrocarbons with the maximal number of Kekulé valence structures for a given
number of fused benzene rings.434,435
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Definition: A peri-condensed benzenoid hydrocar-
bon is a system built from fused benzene rings such
that at least two adjacent rings have a single common
adjacent ring.

A. Non-branched Cata-condensed Benzenoids

Gordon and Davison439 outlined an elegant algo-
rithm for counting K in non-branched cata-condensed
benzenoids, illustrated in Figure 29: To obtain K,
insert in the first ring the number 2, since benzene
has two Kekulé structures. Add +1 to each successive
ring if it is linearly fused, giving 3, 4, etc., respec-
tively, for anthracene, tetracene, etc. When arriving
at a “kink”, that is, a ring at which the direction of
fusion of benzene rings changes, add the number in
the preceding ring. Thus, for the cata-condensed

benzenoid shown in Figure 29, we have to add 3 + 4
to get 7 (which is K for benzanthracene). Continue
to add that number until another “kink” arises. The
inscribed number gives K for benzenoids ending at a
particular ring, the last number giving K for the
benzenoid depicted.

For long cata-condensed benzenoids, the algorithm
of Gordon and Davison (GD) can be modified is
illustrated in Figure 30. First, select a “kink” ring
(somewhere in the middle of the structure). Apply the
GD algorithm to the two fragments obtained when
the selected ring is erased, which will yield K1 and
K2 for their respective number of Kekulé valence
structures. For the benzenoid shown in Figure 30,
we obtain K1 ) 10 and K2 ) 17. Now erase all rings
linearly fused to the “kink” ring and apply the GD
algorithm to these smaller two fragments, which will
yield k1 and k2 for their respective number of Kekulé
valence structures. For the benzenoid shown in
Figure 30, we obtain k1 ) 7 and k2 ) 5. The number
of Kekulé structures for the molecule is given by K
) K1K2 + k1k2, which for the benzenoid shown in
Figure 30 gives 170 + 35 ) 205. If all rings of a
fragment are erased or crossed, then the correspond-
ing ki ) 1.

For families of cata-condensed benzenoids in which
every benzene ring is a “kink” ring (illustrated in
Figure 31), the GD algorithm immediately yields
Fibonacci numbers 2, 3, 5, 8, 13, 21, 34, ... as the
number of Kekulé valence structures for the corre-
sponding cata-condensed benzenoids. Fibonacci num-
bers first appeared in a book on algebra written by
Fibonacci (in the 13 century!) to illustrate the fast
growth of a population of rabbits.440

Figure 28. Initial steps for a systematic construction of
Kekulé valence structures, illustrated on benzo[ghi]-
perylene, that already yield 3 of the 14 Kekulé valence
structures.437

Figure 29. Illustration of the elegant algorithm of Gordon
and Davison439 for the count of Kekulé valence structures
in non-branched cata-condensed benzenoids.

Figure 30. Modification of the algorithm of Gordon and
Davison for cata-condensed benzenoids.

Figure 31. Fibonacci numbers as the count of Kekulé
valence structures for families of cata-condensed ben-
zenoids in which every benzene ring is a “kink” ring.
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B. Branched Cata-condensed Benzenoids
The GD algorithm can be modified to obtain K for

a branched benzenoid having three branches (see
Figure 32). If the central ring is erased, one obtains
three branches having K1, K2, and K3 Kekulé valence
structures. By erasing, in addition to the central ring,
all rings that are linearly fused to the central ring,
we obtain three smaller fragments with k1, k2, and
k3 Kekulé valence structures. The number of Kekulé
structures for the molecule is then K ) K1K2K3 +
k1k2k3.441 A variation of this procedure considers,
instead of individual benzene rings, smaller frag-
ments of linearly fused benzene rings adjacent to a
branching ring.442

C. Benzenoid Lattices
The term “lattice” in chemistry (crystallography)

may refer to any regular arrangements of atoms in
crystals. In contrast, “lattice” in mathematics443 is
used in a very restrictive sense as follows:

Definition: A lattice is a hierarchical arrangement
of elements in which there is only one element at the
top, which dominates all other elements, and only one
element at the bottom, which is dominated by all other
elements. The other elements of a lattice can both
dominate and be dominated by other elements.

In the United States in the mathematical litera-
ture, it is customary to refer to the top element of a
lattice as the “master” and the bottom element as the
“slave”. In chemical literature, where already we
have seen such geographic labels as “fjord”, “cove”,
“bay”, and even “beach” 444 for fragments of the
periphery of benzenoid hydrocarbons in the case of
oriented benzenoid molecules, the terms “peak” and
“valley” have been used to describe vertices on the

periphery which dominate or are dominated by
immediate neighbors. In many European countries
one uses socially less “disturbing” terms: “supre-
mum” and “infinum”, words of Latin origin, to replace
the terms “master” and “slave”, respectively. Observe
that a benzene ring, if oriented so that one carbon is
at the top and one at the bottom, already represents
a lattice. In Figure 33 we illustrate several smaller
benzenoids that can be viewed as a lattice when
oriented as shown. However, a given benzenoid, e.g.,
pyrene, can be oriented so that it no longer represents
a lattice, in which case the algorithm for latticed does
not apply. The number K for lattices is obtained by
a generalization of the GD algorithm, in which first
one considers in isolation the benzene rings at the
molecular periphery. The GD algorithm is then
applied to the peripheral benzene rings that are
linearly fused to the bottom (slave) ring. In these one
inscribes the numbers 2, 3, 4, etc., as far as possible
on both sides of the lattice. From the numbers
inscribed at the periphery, one gets the numbers to
be inscribed in the interior rings that are directly
above them. The numbers to be inscribed in the
interior rings are given by the sum of the numbers
just below each ring. Upon completing calculation of
the numbers in the interior, one can extend the
assignment of ring numbers to the remaining part
of the periphery using the rule for the “kink” rings
of the GD algorithm at the sites where before
assignment was interrupted. The process continues
until all the benzene rings have inscribed a number;
then, the largest number at the top of the lattice is
K for the lattice.445

We will describe in more detail this modified GD
algorithm for the last lattice shown in Figure 33. To
obtain K, start at the bottom benzene ring of the
lattice, in which one inserts 2. Apply the GD algo-
rithm to the linearly fused peripheral rings above the
lowest ring having the label 2. This will give K for
the corresponding fragments of the molecular pe-
riphery: at the left we have k ) 3 for the naphthalene
fragment, and at the right we have k ) 5 for the
tetracene fragment. In the next step, consider the
interior rings just above the rings that have inscribed
numbers. Assign to these rings the sum of the two
numbers below. In this way we obtain k ) 6, k ) 10,
and k ) 15, which are the K numbers for pyrene,
anthanthene, and its higher homologue. At this stage
we are “stuck”: we cannot make further assignments.
To continue the process, consider the central ring of
the phenanthrene moiety, for which two rings have

Figure 32. Modification of the Gordon-Davison algorithm
to yield K for cata-condensed benzenoid having three
branches.

Figure 33. Several smaller benzenoids depicted as lat-
tices. The inscribed numbers at the top indicate K for the
corresponding lattice.445
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values k ) 3 and k ) 6 already assigned. Use the
rule for the “kink” rings of the GD algorithm and
assign to the top ring the sum 3 + 6. This gives k )
9 for the benz[a]pyrene fragment of the lattice. Now
we can continue to complete the assignment for the
remaining rings using again the sum rule (that is,
by adding the k values for the two rings just below a
ring for which a k value has not yet been obtained).
When the process is completed we find k ) 34 for
the top benzene rings, which is K for this lattice. The
process ends when all rings have been assigned
numerical values. In summary, the algorithm for
finding K in benzenoid lattices represents a combina-
tion of the Gordon and Davison algorithm for cata-
condensed benzenoids (which is applied to the lattice
periphery) and the rules of the Pascal triangle (which
apply to the interior benzene rings).

We can illustrate on a benzenoid lattice an impor-
tant one-to-one correspondence between the count of
Kekulé valence structures and the count of monotone
paths.

Definition: A monotone path is a path connecting
a peak and a valley such that each move goes from a
higher position in a hexagon to a lower position.

In Figure 34 we show one of the 70 Kekulé valence
structures of C48H18. The CC double bonds are shown
as thick edges and CC single bonds as thin edges.
We will follow Lewinter et al.446 and refer to the CC
bonds of the benzenoid shown in Figure 34 as
“vertical” or “slanted” edges. Lewinter et al. observed
that, in every row of the benzenoid lattice, there is
but one “slanted” CC bond. If one connects the
“slanted” edges by the adjacent vertical edges, one
obtains a single path that connects the “master” and
“slave” carbon atoms, as illustrated on the right side
of Figure 34. Hence, each Kekulé structure is associ-
ated with a unique path from the top to the bottom
of a lattice; thus, counting the paths is tantamount
to counting Kekulé valence structures.

We also take this opportunity to point out how
apparently different geometrical problems are math-
ematically equivalent. In Figure 35 on the left we
have depicted the same Kekulé structure shown in
Figure 34, but we have shortened the “vertical” CC
bonds considerably. As one can see, the “vertical” CC
bonds do not play an important role in determining
the shape of a path from the top to the bottom of the
lattice. When the “vertical” CC bonds are further

reduced and approach zero length, we obtain in the
limit the diagram shown on the right in Figure 35.
This diagram can be viewed as a fragment of a 5 × 5
coordinate grid, which is referred to in graph theory
as a mesh of a graph G, or shortly M(G):

Definition: The vertices (x,y), such that x and y are
integers satisfying 1 e x e a and 1 e y e b, represent
mesh M(a,b). Two vertices (x,y) and (x′,y′) are adjacent
if either x ) x′ and |y - y′| ) 1, or y ) y′ and |x - x′|
) 1.

Observe that mesh M(a,b) represents an equitable
bipartite graph for which one can construct a k × k
bi-adjacency matrix, where k is the number of starred
and non-starred vertices. Thus, the count of paths
in a k × k mesh is the same as the count of Kekulé
structures for a complete benzenoid lattice having k2

benzene rings, and in the case of an a × b mesh, for
a corresponding benzenoid parallelogram having
a × b benzene rings. As discussed by Lewinter et
al.,446 this approach can be extended to non-paral-
lelogram-like lattice benzenoids having fewer ben-
zene rings than complete parallelogram-like lattices.

D. Peri-condensed Benzenoids
To find K in peri-condensed benzenoid systems that

do not represent a lattice is more involved. However,
John and Sachs447,448 described an algorithm to obtain
K values that can be linked to the GD algorithm and
its generalization to lattices. The approach of John
and Sachs is illustrated in Figure 36 for benzo[ghi]-
perylene, having two “master” and two “slave” rings,
which are labeled by a,b and a′,b′, respectively.
Benzo[ghi]perylene is not a lattice but can be viewed

Figure 34. One-to-one correspondence between the Kekulé
valence structures and the paths illustrated on one of the
Kekulé structures of C48H18. At the right: the unique path
connecting slanted CdC bonds.446

Figure 35. Benzenoid of Figure 34, viewed as a 5 × 5
coordinate grid on which the corresponding path is shown.446

Figure 36. The approach of John and Sachs,447 illustrated
on benzo[ghi]perylene.
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as a combination of two overlapping lattices. Hence,
we will use informally the terms “master” and “slave”
for carbon atoms of the corresponding sub-lattices.
Observe that any two pairs of labels, like (a,a′), (a,b′),
(b,a′), and (b,b′), and interconnecting hexagons con-
sidered in isolation correspond to a lattice. Using the
algorithm already outlined for finding K for lattices,
we can easily obtain Kaa′, Kab′, Kba′, and Kbb′. To obtain
K for the molecule, we construct in this case a |2 × 2|
determinant with Kaa′ and Kab′ as the elements of the
first row (or column) and Kba′ and Kbb′ as the elements
of the second row (or column, respectively). K is given
by the value of this determinant. In a case of a
benzenoid having n “masters” and n “slaves”, one
constructs an |n × n| determinant in which columns
are labeled a, b, c, ... and rows are labeled a′, b′, c′,
... (or vice versa). The corresponding elements (x,y)
of the determinant are given by the value k for the
corresponding lattices having x and y on the top and
the bottom (x ) a, b, c, ... and y ) a′, b′, c′, ...). K is
given by the value of the |n × n| determinant.

The approach of John and Sachs is particularly
suitable for calculation of the K values of the giant
benzenoids described by Müllen and co-workers
(Figure 12). The smallest of these giant benzenoids,
“super-naphthalene”, “super-phenalene”, and “super-
triphenylene”, already have K ) 16 100, K ) 540 000,
and K ) 66 998 000, respectively. However, calcula-
tion of these large numbers follows from relatively
small |5 × 5| and |6 × 6| determinants. For a numer-
ical illustration of such calculations, consult ref 449.

It has been pointed out by Gordon and Davison
that their algorithm was based on enumeration of
distinct monotone paths in a benzenoid system. In
the case of lattices, K indicates the count of distinct
paths from the top of a lattice to the bottom carbon
atom. In Figure 37 we illustrate this one-to-one
correspondence between paths and the Kekulé va-

lence structure for benzo[ghi]perylene. Sachs450 rigor-
ously proved the one-to-one correspondence between
paths and the count of Kekulé valence structures.
Observe that, once all the paths have been identified,
one can draw Kekulé valence structures by replacing
each path with a conjugated chain that starts and
ends with a CC double bond. Such assignment of CC
double bonds determines the bond type for CC bonds
that are not part of any conjugated chain.

E. Miscellaneous Benzenoids
Gutman, Cyvin, and co-workers79,451 have consid-

ered, in a number of publications, enumeration of the
Kekulé valence structures for numerous benzenoids
that belongs to different classes, characterized by an
overall identical shape. We direct the reader to the
book by Cyvin and Gutman, Kekulé Structures in
Benzenoid Hydrocarbons,79 where the results of such
enumerations are collected for many classes of dif-
ferent benzenoids. A shorter account of enumeration
of Kekulé valence structures can be found in another
book by Gutman and Cyvin, Introduction to the
Theory of Benzenoid Hydrocarbons,214 and a review
article by Klein, Babić, and Trinajstić, “Enumeration
in Chemistry”.428 Among these various systems, of
particular interest are the so-called “fully benzenoid”
hydrocarbons described by Clar, having 6n π-electron
and being unusually stable. Polansky and Gutman453

were the first to consider this class and arrived at a
combinatorial expression for the number of Kekulé
structures for fully benzenoid hydrocarbons. Their
formula, however, has little practical value, except
perhaps to show that there are such formulas,
because among other drawbacks it requires summa-
tions over all possible combinations of mutually
disjoint ring. It is thus reminiscent of the elegant
theorem of Tutte on the existence of a Kekulé
structure, which may be easy to understand but
difficult to apply in practice. That the “analytic”
formula of Polansky and Gutman has little use has
been indirectly acknowledged by Gutman and oth-
ers,454 who in another paper on enumeration and
classification of “fully benzenoid” systems and enu-
meration of their Kekulé valence structures structure
did not use their analytic formula but instead used
a special computer program for actual computation
of K, based on a technique proposed by Brown.455

A brief review of various methods used for enu-
meration of Kekulé structures for rectangle-shaped
benzenoids has appeared in Topics in Current Chem-
istry, volume 153.451 Enumeration of Kekulé valence
structures has also been extended to a class of
generalized benzenoid hydrocarbons, the so-called
coronoid hydrocarbons, which are built from fused
benzene rings, but permitting in the interior one or
more larger “holes”. For some coronoids it was
possible to get an adequate mathematical formula-
tion,456 or a practical and relatively simple algo-
rithm.457 We should add that Yen458 in 1971 pre-
sented equations for the determination of the number
of Kekulé valence structures for several families of
peri-condensed benzenoids, including the square
(parallelogram) model, symmetric circular systems,
the rectangular model, and a skew strip model.

Figure 37. One-to-one correspondence between paths and
the Kekulé valence structure illustrated for benzo[ghi]-
perylene.
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Sheng459 outlined an economical two-vertex elimina-
tion method for deciding whether a polycyclic ben-
zenoid hydrocarbon has Kekulé valence structure,
and brothers He Wenjie (mathematician) and He
Wenchen (chemist) discuss enumeration of Kekulé
structures using a matrix corresponding to “peak”
and “valley” carbon atoms.460 We should also mention
the quick and robust method of Kearsley461 for
assigning CC double bonds in a Kekulé valence
structure on the basis of an ordered fragmentation
of the molecular skeleton.

F. The Approach of Platt
We will mention here Platt’s199 method for finding

K in larger benzenoids because it is based on totally
different concepts. His approach, which apparently
it is not well known, is intriguing as it reveals
another elusive link between VB and MO theories.
For instance, neither the book by Cyvin and Gutman,
Kekulé Structures in Benzenoid Hydrocarbons,79 with
over 200 references, which on over 300 pages dis-
cusses calculation of K, nor the follow-up book by
Gutman and Cyvin on the theory of benzenoid
hydrocarbons,214 mentions Platt and his approach.
Platt based the calculation of K on the properties of
non-bonding molecular orbitals (NBMO’s). It is well
known from HMO theory that for benzenoid hydro-
carbons NBMO’s have zero amplitudes on alternating
carbon centers (see Figure 38). At the same time,
non-zero amplitudes of NBMO’s on adjacent carbon
centers satisfy the zero sum rule: The coefficients of
NBMO’s on adjacent atoms add to zero for each
carbon atom. In the case of radicals, Platt has shown
that the coefficient at the terminal carbon gives K
for the underlying benzenoid hydrocarbon. This is
illustrated in Figure 38 for benzo[ghi]perylene. One
starts by assigning zero amplitudes to alternate
carbon atoms. One then assigns “1” as the amplitude
to a starting carbon atom (shown in the bottom row
of carbons of benzo[ghi]perylene). By applying the
zero sum rule, one can determine the amplitude of
one or more neighboring carbon atoms. If a carbon
atom cannot be assigned a coefficient, one assigns to
it a variable x as the amplitude and continues using
the sum rule to find the coefficients of neighboring
non-zero carbon atoms. The process continues until
all non-zero carbon atoms have been assigned non-
zero NBMO coefficients. The value for the unknown
variable x can be subsequently determined from the
sum rule applied to the carbon atom involving

undetermined contributions expressed with variables
x, y, etc. There are always enough sites to allow
solving for undetermined variables x, y, etc., the
solutions of which are constrained to integers. K is
given as the sum of coefficients adjacent to the site
of radical substitution.

On the left side of Figure 38, we started by
assigning 1 and x to the two bottom carbon atoms.
By following the sum rules, we can assign values for
all non-zero carbon atoms, ending with the atomic
coefficients 1 + 3x, 1 + 2x, and 2 + x, which have to
add to zero. This gives 4 + 6x ) 0, or 6x ) -4.
Because x has to be an integer, we have to multiply
the initial coefficients 1 and x by 6, getting 6 and 6x
or -4, respectively. Once all non-zero entries have
been assigned with the initial steps revised in this
way, we find at the top that K ) 14. Benzo[ghi]-
perylene is too a small structure to illustrate the
power of the Platt algorithm, which can be applied
with similar ease to the giant benzenoids shown in
Figure 12.

Herndon has drawn attention to the above almost
forgotten approach of Platt in several publica-
tions.462-464 Coefficients of NBMO’s were also dis-
cussed by Longuet-Higgins465 and others.466,467 NB-
MO’s have been of interest in various problems of
chemistry. First, they play an important role in HMO
theory. The zero sum rule, which states that the sum
of the coefficients in the NBMO’s around each atom
is equal to zero, was first used by Longuet-Higgins.468

The enumeration of bonding (N+), non-bonding (N0),
and antibonding (N-) orbitals in HMO models by the
graph theoretical approach, which takes advantages
of graph theoretical transformations that leave the
numbers N+, N0, and N- unchanged, was outlined
by Cvetković, Gutman, and Trinajstić.469,470 Gutman
and Trinajstić offered a graph theoretical classifica-
tion of conjugated hydrocarbons based on two pa-
rameters: the difference N+ - N- and N0.471 Al-
though this classification relates to Hückel molecular
orbitals, it can be extended to more elaborate MO
approaches; thus, it has some validity beyond HMO
theory. More recently it was shown that the non-
bonding orbitals of many graphite-derived carbon
frameworks can be understood in terms of the non-
bonding orbitals of the infinite graphite sheet.444,472

For additional developments of the HMO method,
consult ref 193.

G. Computer Programs for Calculating K
There are several computer programs that calcu-

late K.392,455 When one is considering benzenoid
hydrocarbons, one can take advantage of the fact that
the absolute value of the constant term in the
characteristic polynomial is the square of K.474,475 For
bipartite graphs (benzenoids systems and other poly-
cyclic systems having only even-member rings), as
G. G. Hall476 pointed out, one can obtain K as the
value of the determinant of one of the blocks of the
adjacency matrix. Torrens473 constructed a fast com-
puter algorithm for permanents of sparse matrices
of alternant hydrocarbons, and such are the adja-
cency matrix of molecular graphs of benzenoid hy-
drocarbons.

Figure 38. Illustration of the method of Plat199 that
determined K from properties of the coefficients of NBMO.
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H. Transfer-Matrix Method

Finally let us mention the approach known as the
transfer-matrix method, which is particularly useful
for systems that have repeating sub-units, e.g.,
systems with high symmetry and polymers. Besides
applications to benzenoid and non-benzenoid poly-
mers, the transfer-matrix method is suitable for
systems with rotational symmetry, such as buckmin-
sterfullerene, C60. In fact, the first reported value for
the number of Kekulé valence structures in buck-
minsterfullerene C60, which is 12 500, was obtained
using the transfer-matrix method.477 The transfer-
matrix method has been used for some time in
statistical mechanics.477-479 Klein and co-workers480-485

pioneered the application of the transfer-matrix
method for chemical enumerations.

In Figure 39 we illustrate construction of the 2 × 2
transfer matrix for a tetrabenzanthracene polymer.
In this polymer, two CC bonds connect the neighbor-
ing monomer units, each of which can be either a CC
double or a CC single bond. If both connecting bonds
were either single or double, then all the remaining
CC bonds in the polymer would have fixed CC bond
type. A transfer matrix is constructed by considering
the four possible assignments for the connecting
bonds: DS,DS, DS,SD, SD,DS, and SD,SD, where S
and D designate CC single and CC double bonds,
respectively. The corresponding matrix elements are
given by the number of Kekulé valence structures for
the monomer unit when the two connecting bonds
take any of the four possible assignments. This is
illustrated for dibenzopyrene on the right side of the
Figure 39. For example, when we assign DS,DS bond

types to connecting CC bonds (top of Figure 39), the
K for the monomer unit is that of a phenanthrene
fragment with K ) 5, but with DS,SD assignment
the monomer unit becomes a diphenylene fragment
with K ) 4, etc. In this way we obtain the transfer
matrix shown at the bottom of Figure 39.

For any finite molecule which is a member of a
family that is based on the same repeating monomer
unit, the number of Kekulé valence structures is
given by the formula

where A and B depend on the end groups, which may
be equal or different. The end groups may differ from
polymer to polymer, even when polymers have the
same repeating unit. λ1 and λ2 are the roots of the
equation det| T - λI | ) 0, where I is the 2 × 2
identity matrix. In the case of the transfer matrix
shown in Figure 39, the secular equation is a qua-
dratic equation, x2 - 10x + 1 ) 0 with roots λ1,2 )
5 ( x24. Using known values for KA and KB, one can
calculate the “end” constants A and B and then derive
KN for a polymer having N units. For more details,
consult refs 480-485.

I. Use of Recursion Relations
To find K for a family of structurally related

compounds, such as polymers of different lengths
having conjugated polycyclic units (i.e., benzenoid
polymers), it is useful to develop recursion for-
mulas.486-489 In such situations, the Kekulé structure
counts follow a recursion,

from which one can quickly find KN+1 once the
constants A and B (which depend on the “end” group
for the polymers considered) are known. For example,
for the benzenoid polymer shown in Figure 40, with
K1 ) 20, K2 ) 198, K3 ) 1960, and K4 ) 19 402, one
obtains a set of linear equations,483

which gives A ) 10 and B ) -1 and leads to the
recursion

The coefficients A and B differ only in sign from the
coefficients of the secular equation det| T - λI | ) 0
given earlier.

The recursive approach is suitable for rigorous
evaluation of the expression for resonance energies
within the model of conjugated circuits for structur-
ally related benzenoid hydrocarbons of increasing

Figure 39. Construction of the 2 × 2 transfer matrix for
a tetrabenzanthracene polymer.

Figure 40. Benzenoid polymer.

KN ) A(λ1)
N + B(λ2)

N

KN+1 ) AKN + BKN-1

198A + 20B ) 1960

1960A + 198B ) 19 402

KN+1 ) 10KN - KN-1
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size. Using the algebra of large numbers, Živković
et al.485 developed the exact formulas for contribu-
tions from individual benzene rings of polymers with
up to 25 000 repeating units (close to half a million
carbon atoms). All arithmetic procedures were carried
out in terms of whole numbers retaining all digits,
of which there were sometimes more than 105. The
particular program was developed and implemented
for computer by Živković.489

J. Use of Signed Matrices
Before we outline Kasteleyn’s490,491 ingenious method

for counting the number of Kekulé structures that
is based on the signed matrix of a graph, that is,
matrices of graphs which may have positive and
negative entries, we have to introduce a few basic
definitions of graph theory. We have already defined
a bipartite graph as a graph in which one can
partition the vertex set into two subsets, V* and V 0,
so that only vertices belonging to different sets are
connected. We can now consider equitable bipartite
graphs, defined as follows:

Definition: A bipartite graph is equitable if the
number of vertices in the two subsets V* and V 0 is
equal, that is, n* ) n0.

If a molecular graph has Kekulé valence structure
then it is equitable, because each CdC bond joins a
starred and non-starred carbon atom. The opposite
need not be true, as is illustrated with the graph of
a non-existing hydrocarbon Figure 41, for which K
) 0. Clar49 speculated that the hydrocarbon shown
in Figure 41 could possibly exist by having weak para
bonds between two condensed triangulene systems,
but attempts to synthesize the compound failed. For
bipartite molecules, the ground-state spin is simply
given as the difference between the numbers n* and
n0 of starred and non-starred sites:

In fact, this is a theorem of Lieb and Mattis.492 Hence,
for equitable bipartite graphs, like that shown in
Figure 41, we have S ) 0. As pointed out by Klein,10

in all cases investigated so far, the VB predictions of
ground-state spin appear correct when compared
with the full configuration interaction calculations
or the Pariser-Parr-Pople model,493,494 with accurate
ab initio calculations,494-496 or with experiment.497-500

The signed matrix is related to the adjacency
matrix of a graph, with the distinction that some of
its entries may be negative. In order to construct the

signed matrix, one first considers an embedded
planar graph and assigns alternating directions (or
signs) to individual bonds of even-member rings. If
an edge is directed from i to j, then the matrix
element Si,j ) -1. Consequently, the matrix element
Sj,i ) +1, and the signed matrix is necessarily anti-
symmetric. The absolute value of the determinant of
the S matrix gives K2, analogous to the relationship
between the absolute value of the determinant of an
adjacency matrix and K2, already known to Dewar
and Longuet-Higgins,474 and Günthard and Pri-
mas.475 “Signed” matrices can be constructed for
planar polycyclic graphs only. We may add that most
graphs representing the molecular skeletons of cyclic
compounds met in chemistry are planar, although
very large and complex structures may have a non-
planar graph. Planar and non-planar graphs are
differentiated in graph theory as follows:

Definition: Planar graphs can always be drawn so
that no crossing of edges occurs. Moreover, according
to a theorem of Fary, planar graphs can be drawn
always with edges as straight lines.501

Definition: Non-planar graphs cannot be drawn
without at least one crossing of edges.

The Polish mathematician Kazimier Kuratowski502

proved in 1930 that the smallest non-planar graphs
are the complete graph on five vertices K5, the
complete bipartite graph K3,3 having six vertices
(Figure 42). Although the molecular skeletons of most
molecules can be represented as planar graphs, non-
planar graphs are also of considerable interest in
chemistry. In Figure 43 we show the Petersen
graph503 that Prelog and Dunitz504 used to illustrate
the relationship between isomers in the rearrange-
ments of trigonal bipyramidal complexes under the
mechanism in which an exchange of the axial and
the equatorial ligands occurs. It is illustrated in two
pictorial forms of different symmetry in order to
emphasize that graphs are defined by the connectiv-

Figure 41. Graph of a non-existent benzenoid (having K
) 0) having an equal number of “starred” and “unstarred”
carbon atoms.

S ) |n* - n0|/2

Figure 42. The smallest non-planar graphs of Kura-
towski:502 the complete graph on five vertices K5, and the
complete bipartite graph K3,3 having six vertices.

Figure 43. Two different representations of the Petersen
graph.
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ity, which can be pictured in different geometrical
ways. Planarity of a graph and planarity of a mol-
ecule are therefore different things. For example, all
Platonic polyhedra are 3-D objects; hence, in a
geometrical sense they are non-planar, but their
graphs (which can be depicted also as Schlegel
projections) are planar. The first non-planar graph
of interest in chemistry was introduced in 1966 by
Balaban et al.505 It is known as the Desargues-Levi
graph (Figure 44) and represents degenerate rear-
rangements of the C2H5

+ carbonium ion via multiple
1,2-shifts. For alternative geometrical representa-
tions of the Desargues-Levi graph, see ref 506.

VIII. Enumeration of Conjugated Circuits
Enumeration of conjugated circuits within indi-

vidual Kekulé valence structures is, as we will see,
very important, as it yields expressions for molecular
resonance energy (RE). We have already pointed out
that one can differentiate between linearly indepen-
dent conjugated circuits and linearly dependent and
disjoint combinations of conjugated circuits. In the
following we will restrict attention to linearly inde-
pendent conjugated circuits only. In the case of
benzenoid hydrocarbons, the number of linearly
independent conjugated circuits equals the number
of condensed benzene rings, except in cases involving
structures having essentially single and essentially
double CC bonds (e.g., the central CC bonds in
perylene, zethrene, and floranthene; Figure 45).
Rings with CC bonds that have the same bond type
in all Kekulé valence structures do not participate
in formation of conjugated circuits.

For smaller molecules, conjugated circuits can be
enumerated directly by inspecting all Kekulé valence
structures of a molecule. If one is interested in
linearly independent conjugated circuits, which will
be the case in this review unless otherwise stated, it
is convenient to inscribe numbers 1, 2, 3, ... directly
into benzene rings involving R1, R2, R3, ..., conjugated
circuits, respectively. This is illustrated in Figure 46
for the 10 symmetry-non-equivalent Kekulé valence
structures of benzo[ghi]perylene.507,508 We inscribe “1”
in all rings having three alternating CC double
bonds. The number “2” is inscribed in rings that are
adjacent to rings already having the label “1” iff (that
is, if and only if) they are part of an R2 conjugated
circuit having five CC double bonds. Hence, combined
adjacent rings “1” and “2” represent the Kekulé
valence structure of a naphthalene fragment with
alternating CC double bonds on the periphery of the
fragment. The number “3” is inscribed similarly in
rings that are either adjacent to R2 rings or adjacent
to two R1 rings forming conjugated circuits having
seven CC double bonds on their periphery, and so on.
Under each Kekulé valence structure shown in
Figure 46, we have summarized the count of conju-
gated circuits R1, R2, R3, and R4 by a four-digit code,
the digits of which give the number of conjugated
circuits of different size. The count of the conjugated
circuits for a molecule as a whole is obtained by
adding the contributions from individual Kekulé
valence structures.

A more efficient algorithm for counting conjugated
circuits R1, R2, R3, and R4 is based on enumeration
of conjugated circuits for individual symmetry-
unrelated benzene rings, rather than considering
individual Kekulé valence structures. This approach,
which has been outlined in ref 507, is particularly
suited for large systems which may have very many
Kekulé valence structures but a relatively small
number of symmetry-non-equivalent fused benzene
rings. For example, “super-phenalene” has K )
540 000,509 but only 34 fused benzene rings, of which
only eight are symmetry-non-equivalent. The algo-
rithm is as follows:

Algorithm
(1) Consider one ring at a time and outline all conju-

gated circuits R1, R2, R3, ... possible for that ring.
(2) Complete the assignment of CC double bond for

adjacent bonds when possible.
(3) The number of Kekulé structures of the fragment

having unassigned CC bonds gives the occurrence
of R1/2, R2, R3, .... The number of R1 is twice the
number of the Kekulé structures of the fragment
because the benzene ring has two Kekulé valence
structures.

In Figure 47 we illustrate this ring-based algorithm
on one of the four symmetry non-equivalent rings of
benzo[ghi]perylene. In the first row of Figure 47 we
consider R1 conjugated circuits for the first ring (A)
of benzo[ghi]perylene. In the second row we show all
possible R2 conjugated circuits of benzo[ghi]perylene
which involve ring A. The last row of Figure 47 shows
all conceivable R3 conjugated circuits involving ring
A (defined by alternating CC single and CC double
bonds on the periphery of phenanthrene, anthracene,

Figure 44. The first “reaction” graph introduced in
chemistry in 1966 by Balaban et al.505 to represent degen-
erate rearrangement of C2H5

+, known as the Desargues-
Levi graph.

Figure 45. Benzenoids with essentially single and es-
sentially double CC bonds illustrated on perylene, zethrene,
and fluoranthene
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and pyrene). However, the last possibility shown has
to be ignored because it does not allow completion of
a Kekulé valence structure for the CC bonds not
involved in construction of the conjugated circuits.

We have designated the four non-equivalent rings
as A, B, C, and D. For each ring separately we count
its participation in conjugated circuits of different
sizes. For example, ring A appears as R1 in six Kekulé
structures, because the fragment left unassigned is
that of naphthalene with K ) 3, but R1 can have two
Kekulé structures, which gives as the answer 6. The
same ring can appear in five Kekulé structures as
part of the R2 conjugated circuit, which follows from
examination of the two structures in the second row
of Figure 47. When all the structures have been
examined and contributions added from symmetry-
equivalent structures, we obtain the expression for
RE for the molecule. In the case of benzo[ghi]-
perylene, symmetry-non-equivalent fragments in-
clude benzene, naphthalene, and phenanthrene hav-
ing two, three, and five Kekulé valence structures,
respectively. For the case considered, we have the

following ring participation in different conjugated
circuits: A ) (6, 5, 3, 0); B ) (10, 4, 0, 0); C )
(8, 5, 1, 0); and D ) (2, 3, 5, 4). As a result, the sum
(2A + 2B + C + D), which gives for the total
(42, 26, 12, 4), represents the expression for molec-
ular RE. In the case of cata-condensed benzenoids,
Balaban and Tomescu510,511 derived analytical ex-
pressions for the enumeration of conjugated circuits.

For a recent description of efficient algorithms for
calculating the contributions of conjugated circuits
to the resonance energy expressions of benzenoid
hydrocarbons, see the paper by Lin.512 In this work,
Lin considers larger fragments of several fused
benzene rings for which one enumerates conjugated
circuits. The search for conjugated circuits in a large
molecule was then reduced to a search for a selection
of characteristic fragments. Such an approach has
been previously used by this author,139 Herndon,164

Klein and co-workers,513,514 and Trinajstić and co-
workers515 on smaller benzenoids, while Lin was able
to extend the approach to giant benzenoids.

Use of Signed Matrices. The transfer-matrix
method, the approaches using recursive relations,
and the method based on signed matrices all can be
suitably modified to yield the count of conjugated
circuits. We will mention only the use of signed
matrices for enumeration of conjugated circuits.

Klein and Liu516 have shown how the method of
Kasteleyn, based on signed matrices, can be modified
to give the count of conjugated circuits in polymeric
systems. The approach has an important advantage
in that it gives directly the quotient KRN/K which
enters the expression for RE, without the necessity
to calculate KRN and K separately. Here, K is the
number of Kekulé valence structures and KRN is the
number of conjugated circuits of size N (N ) 1 for
conjugated circuits R1, N ) 2 for conjugated circuits
R2, etc.). To obtain the count of conjugated circuits,
one first inverts the signed matrix S to obtain S-1.
One then selects any circuit in a molecule and
calculates the determinant of the minor of the sub-
matrix obtained by considering only the matrix
elements between the vertices forming the circuit
considered. Klein and co-workers applied this ap-
proach to numerous planar carbon networks, most

Figure 46. Enumeration of linearly independent conjugated circuits for 10 symmetry-non-equivalent Kekulé valence
structures of benzo[ghi]perylene by inscribing integers that indicate the size of conjugated circuits involving individual
rings. Under each structure is given the number of R1, R2, R3, and R4 conjugated circuits.

Figure 47. An alternative route for enumeration of
contributing conjugated circuits, illustrated for a single ring
of benzo[ghi]perylene.
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having five- and seven-member rings,517 and to
several thousands of fullerenes (many of which had
more than a million Kekulé valence structures).518

IX. Approximate Approaches versus Ambitious
Computations

If, then, the problem of mathematical determi-
nation of the properties of simple molecules is
in effect solved, the problem of the understand-
ing of the regularities of molecular structure is
just opening up.

Robert G. Parr519

We will briefly review various VB approximate
methods here and show that the conjugated circuits
method can be related to VB approaches and that,
therefore, it has a sound quantum chemistry basis.
This is needed because later we will relate Clar’s
π-sextet model to the conjugated circuits model and
will show that, therefore, one can justify Clar’s
empirical approach by quantum chemical arguments.

Pauling and Wheland initiated semi-empirical
valence bond (VB) approaches to benzenoid hydro-
carbons in 1933.36 It was soon recognized that solving
the problem for large structures is difficult and
clearly some simplification was needed. This agrees
with the well-known and often cited quotation of
Dirac:47

The underlying physical laws necessary for
mathematical theory of a large part of physics
and the whole of chemistry are thus completely
known, and the difficulty is only that the exact
application of these laws leads to equations
much too complicated to be soluble.

Often, however, the continuation of the quotation
is not transmitted, which says:47

It therefore becomes desirable that approximate
practical methods of applying quantum mechan-
ics should be developed, which can lead to an
explanation of the main features of complex
systems without too much computations.

We underlined the word “explanation” to empha-
size that, besides computations, there is a part of
modeling that necessitates interpretation of computa-
tions. In 1929, when Dirac wrote his paper on
“Quantum Mechanics of Many-Electron Systems”
(from which the above quotations were taken), he
could not have anticipated the emergence of fast
computers that would made it possible to get involved
in heavy computations. But “heavy” computations do
not eliminate the need for an “explanation of the main
features of complex systems”. True, what was complex
in 1929 need not be equally complex a hundred years
later, but a hundred years later other complex
systems will emerge, to which the above Dirac
quotation will apply as it did in 1929. Development
of fast computers tends to give an impression or
illusion that there are no limits to computational
capabilities. In this age of euphoria of computeriza-
tion, some may have overlooked the fact that, as
computers may have no limitations, there is also no
limit to the complexity of molecular systems, par-
ticularly as we drift into molecular biology and cell

biology, not to mention the ultimate complexity of the
human brain. This illusion or perception of computers
as a tool of unlimited power prompted me to present
the following quotation in the format of a question
and answer, as a reminder that there are inherent
limitations in extending computations to systems of
ever increasing complexity.

Question: Who can and who cannot tell the differ-
ence between Zinfandel and Pinot Noir?

Answer: Schrödinger can and Schrödinger Equa-
tion cannot.520,521

The above quotation was inspired by a quotation
attributed to Joan Gussow,522,523 “As for butter versus
margarine, I trust cows more than chemists”, which
in an elegant way reminds us that there may be some
inherent limitations in technical imitations of nature.

A. Semi-empirical Valence Bond Approaches for
Benzenoid Hydrocarbons

1. Pauling−Wheland Valence Bond Approach
The Pauling-Wheland valence bond approach is

based on considering a set of canonical valence
structures for a molecule, known also as Rumer
diagrams,130 in which no crossing of valence lines
representing pairing of π-electrons occurs. In the case
of benzene, Rumer diagrams are, in fact, the two
Kekulé structures and three Dewar structures (Fig-
ure 48). The calculation of matrix elements between
different canonical structures is carried out by using
the method of “islands” described by Pauling.524

Matrix elements between different canonical struc-
tures then reduce to the form

where Q and R are Coulomb and exchange integrals,
respectively, and q and r count the occurrence of Q
and R terms. In the lower part of Figure 48, we show
matrix elements for symmetry-unrelated combina-
tions occurring for benzene canonical forms. For
additional introductory details, consult, for example,
the textbook by Sandorfy.525

The main disadvantage of the Pauling-Wheland
valence bond approach is the fast growth of the
number of canonical structures to be considered as
the sizes of molecules increase. For example, benzo-
cyclobutadiene, which has just two more π-electrons
than benzene, has 14 canonical structures, compared
to only 5 canonical structures for benzene, while

Figure 48. Calculation of VB matrix elements between
different canonical structures using the method of “islands”
of Pauling.

1/2n(qQ + rR)
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naphthalene has 42 canonical structures by having
only two more π-electrons than pentalene. The num-
bers 1, 2, 5, 14, 42, 132, 429, 1430, ... are the Catalan
numbers, characterized by very fast growth and given
by

They occur in several problems of interest in chem-
istry,526-530 particularly in enumeration of so-called
“excited” valence structures. They are named after
the Belgian mathematician Eugene Charles Catalan
(1814-1894), but the 18th century Mongolian scien-
tist Ming Antu had already known these numbers.531

2. Pauling−Wheland Resonance Theory

The Pauling-Wheland resonance theory is based
on considering Kekulé valence structures only as a
basis for quantum chemical computations on ben-
zenoid hydrocarbons. Arguments were outlined which
support, at least for the case of benzenoid hydrocar-
bons,7,482 the idea of using only Kekulé valence
structures as a basis for VB computations. One can
speak of Kekulé space, based on Kekulé valence
structures of benzenoids, and develop appropriate
Kekulé space algebra.494 Formally, the Pauling-
Wheland resonance theory differs from the Pauling-
Wheland valence bond approach in that now one is
restricting the Rumer diagrams to involve only
structures with the nearest-neighbor spin-pairing. As
Pauling524 has shown, the overlap and Hamiltonian
matrix elements between different Kekulé structures
are conveniently expressed in terms of superposition
diagrams obtained by superimposing the π-bonds of
a pair of Kekulé structures. In Figure 49 we show
superposition diagrams for the three Kekulé valence
structures of naphthalene merely to illustrate some
distant similarity of such diagrams with both the
conjugated circuits and Clar’s structures. The super-

position matrix is symmetric, and only the elements
on and above the main diagonal are shown.

The matrix elements of the Pauling-Wheland
resonance theory between Kekulé structures K and
K ′ are given as7-10

where J is an exchange parameter and 〈 K | K′ 〉 is
the overlap integral:

Here, N designates the number of π pairs, n is the
number of “small” islands, and nn is the number of
“large” islands. Small islands involve a pair of
adjacent carbon atoms, and large islands involve
cyclic contributions having six or more carbon atoms.
For more details, readers should consult relevant
publications by Klein and collaborators.533-537

3. Herndon−Simpson Model
The Herndon-Simpson model may be viewed as a

version of the Pauling-Wheland resonance theory in
which overlap between Kekulé structures is ignored
(assumed to be zero; alternatively, Kekulé valence
structures are viewed as orthogonal). Simpson169

noticed that the combinations of the ground and
excited states of benzene resemble conventional
Kekulé valence structures. This led him to interpret
such combinations as exact orthogonal Kekulé struc-
tures, which led to a simplified version of the VB
approach, referred to often as the Herndon-Simpson
model. Simpson’s model was not recognized at the
time as a viable approach to characterization of the
stability and aromaticity of benzenoids and most
likely would have been totally forgotten. However,
Herndon164-168 developed his resonance theory (which
was later found to have formal similarities to Sim-
pson’s approach) and was able to show that it gives
molecular resonance energies that are as good as one
gets from the Dewar and de Llano45 SCF MO type
calculations. The success of Herndon’s resonance
theory resurrected Simpson’s approach and showed
that a simple theory, if it involves the crucial
structural elements, can sometimes work as well as
quite sophisticated models. The validity of such a
philosophy has been recognized and much expounded
upon by the late Professor C. A. Coulson, as is evident
from quotations given in ref 538.

4. Hierarchical VB Schemes
Hierarchical VB schemes are illustrated in Figure

50 on the left. The diagram represents a modification
of a similar diagram representing the hierarchical
relationship between different VB models considered
by Klein et al.7,534 At each successive step, a model
with additional computational simplifications is in-
troduced, but not necessarily at the expense of
precision. We have listed as the last variant of the
parametrized VB model the Herndon and Hosoya539

model, which considers as the basis not Kekulé
valence structures but Clar-type valence structures
(that will be outlined later in greater length). Is it

Figure 49. Superposition diagrams for the three Kekulé
valence structures of naphthalene.

Cn ) (2n)!/{n!(n + 1)!}

〈 K | H | K ′ 〉 ) -(3/2) J 〈 K | K′ 〉

〈 K | K′ 〉 ) (1/2)N-n-nn
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possible to have a still simpler, essentially VB ap-
proach than that of Herndon and Hosoya?

In parallel to the VB hierarchical relationship of
different models shown on the right-hand side of
Figure 50, we depicted a similar hierarchical rela-
tionship for several graph theoretical approaches,
starting with the conjugated circuits model as the
central and historically the first VB-type graph
theoretical model. The conjugated circuits model, as
has been recognized by Herndon,540 and Schaad and
Hess,541,542 can be cast in a format that is mathemati-
cally equivalent to the Simpson-Herndon VB ap-
proach. We have also pointed out in several publi-
cations that the mathematical formulations of the
structure-resonance theory put forth by Herndon
and the conjugated circuits approach are practically
identical, “since resonance integrals are enumerated
by a procedure that involves a sequential deletion of
each conjugated circuit from the molecular π graph
of the molecule under consideration.164”540 Herndon
also pointed out the apparent relationship between
both methods and the “island” procedure described
by Eyring and Kimball,543,544 and Pauling.524 In the
middle of Figure 50, we have indicated with a
horizontal bi-directional arrow the close relationship
between the two approaches. The mathematical
equivalence between two models, however, does not
mean that the approaches are conceptually equiva-
lent. The Herndon-Simpson model is a variant of the
VB method, hence a quantum chemical method,
while the conjugated circuits method is of combina-
torial and graph theoretical origin. We end this
section by quoting a brief summery by D. J. Klein
concerning the hierarchical scheme for valence bond
theoretical models, illustrated in Figure 50:545

There are other motivational derivations, in-
cluding the elegant existential quantum-me-
chanical motivation of Simpson169 and Hern-
don,164 and the independent lucid chemical
graph-theoretical motivation of Milan Randić.51

But as we believe is pedagogically important
there is a more traditional quantum-chemical
derivation9,546,547 via the Pauling-Wheland36,548

valence bond model, which in turn derives from
the usual Schrödinger equation in a sequence
of steps, as indicated in Figure 45 with details
elsewhere.7,9 The scheme is seen to exhibit proper
many-body size-extensivity for energies, with the
present conjugated-circuit formulas being ob-
tained as Hamiltonian expectation (for a reason-
able wavefunction ansatz). (Reference numbers
have been changed to correspond to the num-
bering in the current review.)

X. Conjugated Circuits Model

Conjugated circuit theory shares with Hückel
theory the feature that it can be completely
evaluated from the graph of a molecule. Starting
from Kasteleyn’s result that the determinant of
an appropriately signed adjacency matrix gives
the square of the number of Kekulé structures,
it is possible to show that counting conjugated
circuits just involves evaluating appropriate
small minors of the inverse of the adjacency
matrix. Conjugated circuit computations are
thus not significantly more time consuming than
ordinary Hückel calculations. We have found
that they are much more sensitive than Hückel
calculations ...

T. G. Schmalz and D. J. Klein549

Conjugated circuits are structural invariant and,
as such, can serve for characterization of individual
Kekulé valence structures, for characterization of
local aromaticity, as well as for characterization of
conjugated compounds as a whole. For example, for
the 10 symmetry-non-equivalent Kekulé valence
structures of benzo[ghi]perylene, we obtain the char-
acterization shown in the column labeled “Kekulé
structure code” in Table 12, already depicted in
Figure 46. Hence, the Kekulé structure code is simply
an enumeration of conjugated circuits within a
Kekulé valence structure. The overall molecular
characterization is obtained by summing the contri-
butions from individual Kekulé valence structures.
In the next column of Table 12, we give the expres-
sions for the contributions to molecular RE for
individual Kekulé valence structures. By adding the
contributions of all Kekulé structures, we obtain the
expression for molecular RE for the molecule, as
shown in the last row of Table 12. The numerical
values for molecular RE as well as contributions of
individual Kekulé valence structures were obtained
by using a parametrization of the contributing R1,
R2, and R3 based on SCF MO calculation (expressed
in electronvolts) (vide infra).

We see from Table 12 that, although initially all
Kekulé valence structures were assumed to have the
same weight, they make visibly different contribu-

Figure 50. Diagram representing the hierarchical rela-
tionship between different VB models (based on the work
of Klein et al.7,534).
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tions to the molecular RE. The situation is similar
to simple computations of HMO and VB methods. For
example, in the HMO approach one assumes all CC
bonds to be of equal length, but as a result of
calculations, one obtains different Coulson’s bond
orders (and similarly different Pauling bond orders)
for different bonds. In such a situation, one may
consider an iterative procedure that would result in
internal consistency between the assumed and the
resulting CC bond lengths. In analogy, the same
approach can be applied to conjugated circuits and
molecular RE by weighting individual Kekulé valence
structures so that, in the result, the computed
weights agree with those assumed in the calculations.
Hence, instead of “bond orders” we would have
“Kekulé structure orders”. After a close look at the
expressions and the numerical values for various
Kekulé valence structures of benzo[ghi]perylene, one
can notice that the first Kekulé valence structure
shown in Figure 15, the Fries structure, makes the
dominant contribution to the molecular RE. In fact,
the first eight structures, all of which have df ) 3,
make the largest contributions to RE. The next
important contributions come from Kekulé valence
structures having df ) 2, and finally the smallest
contribution comes from the last, the “anti-Fries”
valence structures, having df ) 1.

A. Monocyclic Conjugated Systems
The great success of the Hückel MO method was

not in quantitative predictions of molecular UV
spectra, or in predicting variations in CC bond
lengths or NMR chemical shifts, but in that it offered
insights on the stability of 4n + 2 monocyclic conju-
gated systems while predicting instability for 4n
monocyclic conjugates systems. These predictions
have been well justified with, on one side, a synthesis
of [18]annulene and related compounds550,551 and, on
the other side, the elusiveness of the synthesis of
cyclobutadiene. We can view as a great success of the
VB method the postulate of Clar, that no polycyclic
conjugated system can exist unless it possesses a
Kekulé valence structure. Finally, we add as an
outstanding successes of the GT method (graph
theory) the prediction of stability of systems having
only 4n + 2 conjugated circuits while predicting
reduced stability for systems having, in addition to
4n + 2, also 4n conjugated circuits. The above GT

result represents a true extension of the Hückel
4n + 2 rule from monocyclic to polycyclic systems.

B. Polycyclic Conjugated Systems
For benzenoid hydrocarbons like naphthalene, an-

thracene, and phenanthrene, there is general agree-
ment, between different approaches to aromaticity,
that these molecule are aromatic and rather stable.
Difficulties arise with polycyclic conjugated systems
for which simple MO, simple VB, simple free-electron
model, and graph theory may disagree. First, we
should mention that simple calculations of these
kinds of molecules need not give reliable results.
Molecules having odd-member rings (non-alternants
for which the starring process of Coulson and Rush-
brooke552 cannot be carried through) have a non-
uniform distribution of charge on various carbon
atoms. For such systems, simple theoretical treat-
ments like the HMO method turn out not to be
computationally consistent.

Hafner and Schneider553,554 synthesized a dimethyl
derivative of aceheptylene (which is build by fusing
a five-member ring with two seven-member rings, the
three rings having a single central common carbon
atom). On the basis of the properties of the compound
(deep red color, spectrum in the visible region re-
sembling that of azulene though displaced to even
longer wavelengths, solubility in 50% sulfuric acid,
undergoing acylation by a Friedel-Crafts reaction),
Hafner and Schneider concluded that aceheptylene
is aromatic. A superficially related molecule, cyclo-
pent[cd]azulene, also built from three fused odd-
member rings, two five-member rings and one seven-
member ring, by contrast lacks the stability and
aromaticity of aceheptylene. It undergoes dimeriza-
tion and shows reactions that have some similarity
to those of dibenzpentalene. Clearly, the two mol-
ecules show considerable differences in their proper-
ties, and the second one is definitely less aromatic,
but does this makes the first one aromatic? Asgar
Ali and Coulson555 considered the properties of
Hafner’s new heptalene and pentalene derivative
from the theoretical point of view. In the abstract of
their paper, they state: “All agree that I (acehepty-
lene) should be genuinely aromatic, and II (cyclopent-
[c,d]azulene) should not.” 555 Well, that may have been
the case then, but it is not quite true now, as we do
not agree that aceheptylene is “genuinely aromatic”,

Table 12. Contributions of Various Kekulé Valence Structures of Benzo[ghi]perylene (Shown in Figure 46) to
Molecular Resonance Energy (RE)

structure (R1, R2, R3, R4) contribution to RE
numerical

value

A 5, 0, 0, 1 (5R1 + R4)/14 0.291
B, C 4, 1, 1, 0 (4R1 + R2 + R3)/14 0.263
D 4, 0, 2, 0 (4R1 + 2R3)/14 0.250
E 3, 3, 0, 0 (3R1 + 3R2)/14 0.239
F, G 3, 2, 1, 0 (3R1 + 2R2 + R3)/14 0.226
H 3, 2, 1, 0 (3R1 + 2R2 + R3)/14 0.226
I, J 3, 2, 0, 1 (3R1 + 2R2 + R4)/14 0.218
K, L 2, 3, 1, 0 (2R1 + 3R2 + R3)/14 0.190
M 2, 2, 1, 1 (2R1 + 2R2 + R3 + R4)/14 0.168
N 1, 3, 2, 0 (R1 + 3R2 + 2R3)/14 0.140

moleculea 42, 26, 12, 4 (42R1 + 26R2 + 12R3 + 4R4)/14 3.107
a The last row gives the expression for molecular RE.
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though it may be “aromatic” to a degree. A close look
at the Kekulé valence structures of aceheptylene
show that there are present in this molecule 4n
conjugated circuits involving two seven-member rings.
We do agree that there is considerable difference
between I and II and agree that II should not be
viewed as aromatic as aceheptylene is. The difference
between I and II is that, while both molecules have
destabilizing 4n conjugated circles, in the case of I
we have 12 π-conjugated circuits while in II we have
conjugated circuits involving eight π-electrons. Smaller
4n conjugated circuits have greater destabilizing anti-
aromatic contributions in comparison with molecules
having larger 4n conjugated circuits. When referring
to aceheptylene, we agree that it is more aromatic
than II, but we would like to reserve the label
“genuinely aromatic” for polycyclic conjugated hy-
drocarbons having only 4n + 2 conjugated circuits
(vide infra). On this ground we agree that compounds
like azupyrene and as-azupyrene, which are related
to Hafner’s aceheptylene and cyclopent[c,d]azulene,
may deserve “the designation aromatic”,556,557 but
according to our analysis of their conjugated circuits,
the label “genuinely aromatic” is better kept for
compounds having only 4n + 2 conjugated circuits.

XI. Expression for Molecular Resonance Energy
By following well laid paths some forgotten
flower may be gathered, but nothing essentially
new will be found.

A. Kekulé558

Molecular resonance energy (RE) is generally ac-
cepted as a valid indication of the “extra” stability of
cyclic systems compared to hypothetical acyclic sys-
tems having the same structural components. Con-
jugated circuits turn out to be among the most
important structural components of Kekulé valence
structures because they lead to expressions for the
molecular RE. Recall the ambiguities associated with
the calculation of RE in MO approaches, in that one
has to choose between various standards, several of
which may be equally plausible. Trinajstić and co-
workers,99,100 and Aihara,101 elegantly solved the
problem of selecting a RE standard, as already
mentioned, for MO theories. Their approach, al-
though it was illustrated on Hückel molecular orbit-
als, applies equally to other MO models in which
electron interaction is represented by a single Hamil-
tonian matrix. The difference between the HMO and
some other MO models can be viewed as introducing
different weights to different CC bonds in the HMO
model.

We should also mention a scheme attributed to
Jiang, Tang, and Hoffmann,559 in which the π-elec-
tron energy of the acyclic reference system is based
on bond additivity:

where Eij is the π-electron energy for a bond i-j, in
which the labels i and j indicate the degrees i and j,
and nij is the number of such bonds in the reference

structure. Bartell560 has considered CC bond addi-
tivity of RE and has shown that such a scheme can
account for the major trends in RE. Similarly, Aida
and Hosoya,561 Gutman,562 and Herndon563 considered
the ring additivity of RE by differentiating benzene
rings on the basis of their immediate environments.
The conjugated circuits approach, one can say, rep-
resents a “fine-tuning” of the bond and ring RE
additivity, replacing the crude bond and ring addi-
tivities, which give only approximate results, with the
conjugated circuit additivity, which gives an exact
expression for RE.

XII. Benzenoids: Systems with Only 4n + 2
Conjugated Circuits

Conjugated circuits offer an elegant solution to
ambiguities concerning the definition of RE for vari-
ous VB models. In the case of benzenoid hydrocar-
bons, the decomposition of Kekulé valence structures
in conjugated circuits eventually leads to an expres-
sion of the form RE ) (n1R1 + n2R2 + n3R3 + ...)/K,
where n1, n2, n3, ... give the count of conjugated
circuits R1, R2, R3, ..., respectively, and K is the
number of Kekulé valence structures of the molecule.
It is known that benzenoid hydrocarbons can have
only 4n + 2 conjugated circuits. The expression for
RE in fact represents the conjugated circuit content
of the “average Kekulé structure”.

In Table 13, under the heading “RE expression”,
we show the decomposition of Kekulé valence struc-
tures for a dozen smaller benzenoid hydrocarbons for
which Dewar and de Llano45 calculated SCF MO
resonance energies. By using the computed RE values
of Dewar and de Llano45 obtained from the SCF MO
method, one can determine the relative roles of
conjugated circuits R1, R2, and R3, which can be
viewed as undetermined parameters in a multivari-
ate linear regression. One obtains a correlation of
very respectable quality, as evidenced by the high
regression coefficient (r ) 0.9993), the low standard
error (s ) 0.029), and the high Fisher ratio (F )
2270). In Table 14, in row 3, we have listed the
coefficients of the regression equation (including the
constant term, which is almost negligible). As we can
see, the largest contribution to molecular RE comes
from the smallest conjugated circuits, R1. As the size
of the conjugated circuits increases, their contribution
to RE decreases by a factor of approximately 1/3. By
using R1 ) 0.815 eV, R2 ) 0.302 eV, and R3 ) 0.085
eV, we obtained the RE for smaller benzenoids, as
shown in Table 13.

The agreement between the SCF MO resonance
energies and the RE obtained from the regression
equation is outstanding. This result is remarkable if
one takes into consideration the fact that conjugated
circuits were found “accidentally” and had no prior
connection to quantum chemical considerations. In
Figure 51 we show the linear correlation between the
graph theoretically computed RE and the Dewar and
de Llano SCF MO resonance energies. The message
that Figure 51 gives is that conjugated circuits
represent an important structural component and
that the average Kekulé valence structure offers a
valid representation of benzenoid hydrocarbons. For

Eπ(reference) )
n12E12 + n13E13 + n22E22 + n23E23 + n33E33
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several of the benzenoids listed in Table 13, we have
depicted in Figure 52 their alternative pictorial
representation based on the expressions for the
average Kekulé valence structure, as derived from
the count of conjugated circuits R1, R2, and R3. The
inscribed fractions are the coefficients of the average
Kekulé structure in the expression for molecular RE
as shown in Table 13. As we can see from Figure 52,
in this model perylene is simply characterized as two
naphthalene molecules, because there are no conju-
gated circuits involving the central ring that would
combine the two naphthalene moieties that are
separated by the essentially single CC bonds.

Additional Benzenoid Systems. Having thus a
recipe for calculating molecular RE, we are in a

position to find the RE for arbitrary benzenoid and
non-benzenoid hydrocarbons. In Table 15 we have

Table 13. Expressions for Molecular RE for Smaller Benzenoids, the SCF MO Computed RE, and the Graph
Theoretical REa

benzenoid RE expression SCF RE(calcd) residual

benzene (2R 1)/2 0.869 0.864 0.002
naphthalene (4R1 + 2R2)/3 1.323 1.324 -0.016
anthracene (6R1 + 4R2 + 2R3)/4 1.600 1.618 -0.018
tetracene (8R1 + 6R2 + 4R3)/4 1.822 1.752 +0.070
phenanthrene (10R1 + 4R2 + R3)/5 1.933 1.940 -0.007
pyrene (12R1 + 8R2 + 4R3)/6 2.098 2.141 -0.043
benzanthracene (16R1 + 8R2 + 3R3)/7 2.291 2.296 -0.005
chrysene (20R1 + 10R2 + 2R3)/8 2.483 2.488 -0.005
benzo[a]pyrene (22R1 + 14R2 + 7R3)/9 2.594 2.579 +0.015
perylene (24R1 + 12R2)/9 2.619 2.628 -0.009
triphenylene (26R1 + 6R2 + 3R3)/9 2.654 2.636 +0.018
benzo[d[pyrene (32R1 + 14R2 + 7R3)/11 2.853 2.861 -0.008
dibenz[a,h]anthracene (36R1 + 8R2 + 6R3)/12 2.948 2.942 +0.006
benzo[ghi]perylene (42R1 + 26R2 + 12R3)/14 3.128 3.130 -0.002

a The contributions of conjugated circuits R1, R2, and R3 were obtained from multiple regression with the SCF MO resonance
energies.

Table 14. Statistical Data for a Stepwise Regression
of SCF MO Resonance Energies and Parameters R1,
R2, and R3

a

R1 R2 R3 const r s F

1 0.9693 0.0744 0.9831 0.1249 346
2 0.8151 0.3403 0.0427 0.9990 0.0327 2 614
3 0.8153 0.3017 0.0848 0.0513 0.9993 0.0286 2 270
4 0.8359 0.2747 0.0929 0.0254 0.99984 0.0137 9 660
5 0.8291 0.2794 0.1042 0.0337 0.99994 0.0093 20 587
6 0.8352 0.2720 0.0997 0.0288 0.99999 0.0034 142 516

a Rows 4-6 give data for cases when one, two, and four
“outliers” were removed from regression.

Figure 51. Linear correlation between the graph theoreti-
cally derived RE and the Dewar and de Llano SCF MO
resonance energies.

Figure 52. Pictorial representation of the benzenoids of
Table 13, based on the count of conjugated circuits R1, R2,
and R3.
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collected the expressions for RE for the 30 smaller
benzenoid hydrocarbons depicted in Figure 53. We
calculated RE and REPE (resonance energy per
electron) using the following parameters (all in eV):
R1 ) 0.869, R2 ) 0.247, and R3 ) 0.100, assuming
contributions from larger conjugated circuits to be
negligible. As expected, the molecular RE increases
with the size of the molecules. If one is interested in
comparing molecules of different size, then REPE, the
RE per π-electron, is of more interest, as Hess and
Schaad pointed out.564 REPE values for the ben-
zenoids shown in Figure 53 may be as high as 0.153
for dibenzopyrene (25/53), and as low as 0.085 for
pentacene (10/53). Observe that some calculated
REPE values are even slightly higher than the REPE
of benzene. Besides dibenzopyrene (25/53), tri-
phenylene (8/53) and tetrabenzantrhacene (26/53)
also have large REPE, all three molecules being
Clar’s “fully benzenoid” hydrocarbons, the Clar struc-
tures of which have only aromatic π-sextets and
“empty” rings and no rings with CC double bonds.
The low REPE value for pentacene reflect the known
fact that the stability of linear acenes, molecules built
from linearly fused benzene rings, steadily decreases.
In Table 16 we have collected the RE and REPE for
linearly fused benzene systems having from 2 (naph-
thalene) to 10 fused rings. In view of the fact that
the largest known linearly fused benzenoid hydro-
carbon has 8 rings, we see that a REPE of ap-
proximately 0.060 is apparently the low boundary for
a molecule to exist. This amounts to about two-thirds
of the REPE value for benzene. With this insight, we
can supplement Clar’s postulate, that conjugated

systems for which one cannot draw Kekulé valence
structure do not exist, by adding the following:

Postulate: Conjugated systems for which one can
write Kekulé valence structure but locally REPE is
less than two-thirds of the value for benzene will not
exist (will not be stable).

We had to add the attribute “locally” in order to
eliminate structures in which the average REPE may
be above the limiting value of approximately 0.060
eV but in which some fragments have a value below
0.060 eV and some have a value above 0.060 eV. A
close look at Table 15 shows additional regularities
concerning the relative values of REPE among dif-
ferent benzenoid hydrocarbons. For example, we find
that benzenoid hydrocarbons having a single Clar
structure tend to have above-average REPE values.
Thus, for example, phenanthrene (4/53), the Clar
structure of which has two π-sextets and a ring with
an isolated CC double bond, has a REPE of 0.140,
and tetrabenzonaphthalene (23/53) has a REPE of
0.146.

In the last two columns of Table 15, we show RE
and REPE for 30 benzenoids, as calculated by Jiang
and Li, who recently reported RE and REPE values
for 89 medium-sized benzenoid hydrocarbons.37 Their
work represents accurate VB calculations based on
the use of all Rumer diagrams (that is, all valence
bond structures in which there is non-crossing of
π-electron couplings). The values of Jiang and Li are
expressed in units of J (which is the absolute value
of the exchange integral). In Figure 54 we show a
linear regression of REPE (J) against REPE (eV),
that is, REPE as calculated by the accurate VB

Table 15. Expressions for Molecular RE for the Benzenoid Hydrocarbons Shown in Figure 53

molecule RE expression RE (eV) REPE RE (J) REPE

1/53 (2R1)/2 0.869 0.145 0.3034 0.0506
2/53 (4R1 + 2R2)/3 1.323 0.132 0.4519 0.0452
3/53 (6R1 + 4R2 + 2R3)/4 1.600 0.114 0.5765 0.0412
4/53 (10R1 + 4R2 + R3)/5 1.955 0.140 0.6403 0.0457
5/53 (8R1 + 6R2 + 4R3)/5 1.766 0.098 0.6983 0.0388
6/53 (16R1 + 8R2 + 3R3)/7 2.311 0.128 0.7763 0.0431
7/53 (20R1 + 10R2 + 2R3)/8 2.506 0.139 0.8168 0.0454
8/53 (26R1 + 6R2 + 3R3)/9 2.708 0.150 0.8549 0.0475
9/53 (12R1 + 8R2 + 4R3)/6 2.133 0.133 0.7237 0.0452
10/53 (10R1 + 8R2 + 6 R3)/6 1.876 0.085 0.8207 0.0373
11/53 (22 R1 + 12 R2 + 7R3)/9 2.531 0.115 0.9010 0.0410
12/53 (26R1 + 16R2 + 5R3)/10 2.705 0.123 0.9157 0.0416
13/53 (36R1 + 16R2 + 6R3)/12 2.986 0.136 0.9723 0.0442
14/53 (30R1 + 18R2 + 6R3)/11 2.828 0.129 0.9529 0.0433
15/53 (40R1 + 20R2 + 5R3)/13 3.092 0.141 1.0004 0.0455
16/53 (42R1 + 14R2 + 5R3)/13 3.111 0.141 0.9980 0.0454
17/53 (46R1 + 18R2 + 5R3)/14 3.209 0.146 1.0242 0.0466
18/53 (32R1 + 14R2 + 7R3)/11 2.906 0.145 0.9401 0.0470
19/53 (22R1 + 14R2 + 7R3)/9 2.585 0.129 0.8890 0.0445
20/53 (36R1 + 24R2 + 14R3)/13 2.970 0.124 1.0519 0.0438
21/53 (24R1 + 18R2 + 12R3)/10 2.650 0.120 0.9638 0.0438
22/53 (42R1 + 26R2 + 12R3)/14 3.150 0.143 1.0469 0.0476
23/53 (96R1 + 34R2 + 12R3)/24 3.876 0.149 1.2253 0.0471
24/53 (64R1 + 48R2 + 27R3)/20 3.509 0.146 1.1871 0.0495
25/53 (76R1 + 24R2 + 14R3)/20 3.669 0.153 1.1560 0.0482
26/53 (192R1 + 48R2 + 12R3)/40 4.498 0.150 n/aa

27/53 (56R1 + 40R2 + 22R3)/18 3.375 0.130 1.1846 0.0456
28/53 (140R1 + 90R2 + 46R3)/35 4.243 0.141 n/a
29/53 (48R1 + 32R2 + 16R3)/16 3.201 0.114 1.2445 0.0445
30/53 (108R1 + 78R2 + 49R3)/30 3.934 0.131 n/a

a n/a ) not available.
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approach of Jiang and Li versus REPE based on
parametrized values of conjugated circuits’ contribu-
tions R1, R2, and R3 (based on the SCF MO calcula-
tions of Dewar and DeLano). Overall, as we can see
from Figure 54, the agreement between the two sets
of REPE values is quite satisfactory. The regression

coefficient is r ) 0.911, standard error s ) 0.0013,
and Fisher ratio F ) 122.2. From Table 15, we see
that three of the compounds shown in Figure 54 show
a large deviation from the regression line. They are
benzene, coronene (24/53), and bisanthene (29/53).
Several factors can cause differences in the calculated

Figure 53. Thirty smaller benzenoid hydrocarbons for which RE values are listed in Table 15. Labels for symmetry-
non-equivalent rings are included for a discussion of local aromaticity in a later part of the review.
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REPE values between the two models, besides the
differences due to the different formalism of the
underlying quantum chemical calculations. One is
the difference due to the assumption of an acyclic
reference structure, made by Jiang and Li. One of
characteristics of their approach is the bond additiv-
ity approach to RE. As a consequence, compounds
like bisanthene, in which the central CC bonds are
essentially single, may show a larger departure from
REPE values based on conjugated circuits, in which
such bonds do not make contributions. A full com-
parison of the REPE values calculated by Jiang and
Li and those computed from the conjugated circuits
shows some discrepancies that have yet to be under-
stood. For example, the conjugated circuits model
always predicts fully benzenoid Clar’s hydrocarbons
to have the largest REPE value, but this is not the
case with the REPE values Jiang and Li computed
for medium-sized benzenoids. According to Jiang and
Li, the highest value of REPE belongs to benzene,
but the next highest value belongs to a coronene (24/
53), which is not a “fully benzenoid Clar’s hydrocar-
bon”. Among four benzenoid hydrocarbons for which
Jiang and Li found the highest REPE, we find two
fully benzenoid hydrocarbons, dibenzopyrene (25/53)
and triphenylene (8/53), to rank as third and sixth,
respectively, after benzene. The conjugated circuits
model ranks dibenzopyrene and triphenylene ahead
of benzene; in fact, the two benzenoid hydrocarbons
are found to have the highest REPE values, 0.153
and 0.150 eV, respectively, while the values for
coronene and benzene are 0.146 and 0.145 eV,
respectively.

In order to compare the results of Jiang and Li with
those based on the conjugate circuits model, we show
in Figure 55 regression of RE as calculated by Jiang
and Li and as obtained by reparametrizing the
conjugated circuits contributions R1, R2, and R3 using
their computed REPE values. The regression is
characterized by the following statistical param-
eters: r ) 0.9876, s ) 0.0385, and F ) 303.2, while
the computed contributions for R1, R2, and R3,
respectively, are

Observe first that, according to these VB calculations,
the relative contributions of the conjugated circuits
R1, R2, and R3 have visibly changed. We see that now
14-π-electron conjugated circuits play a more promi-
nent role than 10-π-electron conjugated circuits,
which is contrary to expectations. It is difficult to
assess, without detailed analysis, to what extent this
may be an artifact of the selection of the standard
used for calculation of RE in the VB computations of
Jiang and Li and to what extent it is a result of
possible differentiation of 14-member conjugated
circuits of different shapes, or a result of neglecting
contributions from higher order conjugated circuits.

Let us return to the four benzenoids shown in
Figure 26, which all have the same number of Kekulé
valence structures, for which the simple proportion-
ality RE ) k log K would predict identical RE. The
count of conjugated circuits for those four benzenoids
is given in Table 17. As we can see from Table 17,
among the four compounds, the cata-condensed ben-
zenoid has the largest number of contributing R1,
which may suggest that this compound would have
largest the RE. However, the cata-condensed ben-
zenoid also has many large conjugated circuits, which
make little, if any, contribution to the RE. It is
therefore not surprising to see that this compound
has the smallest RE. Moreover, because it has two
more carbon atoms than the three peri-condensed
benzenoids, its REPE is visibly smaller than the
REPE of the remaining compounds. From the same
table, we can see that the last two compounds have

Table 16. RE and REPE for Linearly Fused Benzene
Systems Having N ) 2-10 Fused Rings

N R1, R2, R3 K n RE (eV) REPE

2 4, 2, 0 3 10 1.323 0.132
3 6, 4, 2 4 14 1.601 0.114
4 8, 6, 4 5 18 1.767 0.098
5 10, 8, 6 6 22 1.878 0.085
6 12, 10, 8 7 26 1.957 0.075
7 14, 12, 10 8 30 2.016 0.067
8 16, 14, 12 9 34 2.062 0.061
9 18, 16, 14 10 38 2.099 0.055
10 20, 18, 16 11 42 2.130 0.051

Figure 54. Linear regression of REPE, as calculated by
Jiang and Li37 (in units of J), and REPE, as derived from
the conjugated circuits model (in units of electronvolts), for
27 of the benzenoids shown in Figure 53.

Figure 55. Linear regression of RE, as calculated by Jiang
and Li37 (in units of J), and RE, obtained from the con-
jugated circuits model (with R1 ) 0.2277J, R2 ) 0.1008J,
and R3 ) 0.1472J) for 27 of the benzenoid hydrocarbons
shown in Figure 53.

R1 ) 0.2277J R2 ) 0.1008J R3 ) 0.1472J
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the largest RE. We included results for RE based on
two alternative parametrizations of the contributing
conjugated circuits R1, R2, and R3. Observe that,
because the two compounds differ in the number of
R1 and R2 conjugated circuits, slightly different
parametrizations can reverse the relative magnitudes
of their RE values (as shown with the RE* values of
Table 17). The difference in RE between the two
compounds is (2R1 - 6R2 - 2R3)/21, which is almost
zero (being 0.0027 and 0.0084 eV, respectively, for
the two sets of parameters given at the bottom of
Table 17). In comparison with the cata-condensed
benzenoid, the three peri-condensed benzenoids have
an increased number of conjugated circuits R2 and
have fewer non-contributing larger conjugated cir-
cuits; consequently, they show increased molecular
RE. In summary, we have seen that variations in RE
among benzenoid hydrocarbons having the same
number of Kekulé valence structures should not be
ignored, though particularly among isomers having
the same K (the case of the three peri-condensed
benzenoids shown in Figure 26) the differences in RE
are rather small. In contrast, differences in RE
among isomers having different K can be consider-
able, as is already visible by comparison of an-
thracene and phenanthrene, which has only one
additional Kekulé valence structure.

In Table 18 we report RE values for additional
benzenoid hydrocarbons which are illustrated in
Figure 56. Besides RE and REPE, we have listed for
these compounds also the RE/ring, the average RE
per ring, which corresponds to the average ring RE.
As we can see, linear benzenoids 1/56 and 4/56 have

rather low average ring RE, while “fully benzenoid”
hydrocarbons (those having only π-aromatic sextets
or empty rings, in the terminology of Clar), com-
pounds 8/56, 11/56, 14/56, and 16/56, have the
largest average ring RE. The intermediate RE/ring
values belong to compounds having a single Clar
structure (e.g., 3/56, 10/56, 12/56, and 13/56) and to
compounds having migrating π-sextets (the remain-
ing compounds shown in Figure 56). It is interesting
that these average ring RE values point to differences
between benzenoid hydrocarbons having a different
number of aromatic π-sextets, migrating sextets, and
“empty” rings. Hence, the significance of the model
of benzenoids based on Clar’s notions of aromatic
π-sextets, migrating sextets, and “empty” rings could
have been detected from quantum chemical calcula-
tions if the total molecular resonance energy and the
average ring energy contributions had been examined
more closely.

In Table 19 we show the expressions for RE for
miscellaneous benzenoid hydrocarbons shown in
Figure 57. Among the compounds included are zeth-
rene 9/57 and its higher analogue 14/57, both of
which have “fixed” double and single CC bonds, which
can therefore be viewed as weakly coupled “double”
naphthalene and “double” phenanthrene units. The
corresponding RE values are twice as big as those of
naphthalene and phenanthrene, respectively. The
compounds 6/57 and 7/57 have identical expressions
for RE as they are isoconjugated: all the rings after
the terminal rings are “kink” rings of the Gordon and
Davison algorithm for enumeration of K. Again, the
largest ring RE belongs to the “fully benzenoid”

Table 17. Expressions for Molecular RE for the Four Benzenoid Hydrocarbons Shown in Figure 26, Which All
Have the Same Number of Kekulé Valence Structures

molecule RE expression REa REPE

1/26 C30H16 (74R1 + 30R2 + 21R3 + 13R4 + 5R5 + 3R6 + R7)/21 3.477 0.1159
3.376* 0.1125*

2/26 C28H16 (72R1 + 40R2 + 22R3 + 10R4 + 3R5)/21 3.555 0.1270
3.493* 0.1248*

3/26 C28H16 (72R1 + 42R2 + 21R3 + 9R4 + 3R5)/21 3.573 0.1276
3.516* 0.1256*

4/26 C28H16 (70R1 + 48R2 + 23R3 + 5R4 + R5)/21 3.571 0.1275
3.536* 0.1263*

a R1 ) 0.869, R2 ) 0.247, R3 ) 0.100, R4 ) R5 ) R6 ) R7 ) 0. R1* ) 0.815, R2* ) 0.302, R3* ) 0.118.

Table 18. Expressions for Molecular RE for the Benzenoids Shown in Figure 56

molecule RE expression REa RE/ring REPE

1/56 (10R1 + 8R2 + 6R3 + 4R4 + 2R5)/6 1.878 0.376 0.0853
2/56 (22R1 + 12R2 + 7R3 + 3R4 + R5)/9 2.531 0.506 0.1151
3/56 (36R1 + 16R2 + 6R3 + 2R4)/12 2.986 0.597 0.1357
4/56 (12R1 + 10R2 + 8R3 + 6R4 + 4R5 + 2R6)/7 1.957 0.326 0.0753
5/56 (28R1 + 16R2 + 11R3 + 7R4 + 3R5 + R6)/11 2.671 0.445 0.1027
6/56 (52R1 + 24R2 + 12R3 + 6R4 + R5)/16 3.270 0.545 0.1258
7/56 (58R1 + 22R2 + 13R3 + 5R4 + 3R5 + R6)/17 3.361 0.560 0.1293
8/56 (76R1 + 24R2 + 14R3 + 6R4)/20 3.669 0.611 0.1411
9/56 (52R1 + 28R2 + 10R3 + 4R4 + 2R5)/16 3.319 0.553 0.1277
10/56 (56R1 + 40R2 + 22R3 + 8R4)/18 3.375 0.482 0.1298
11/56 (192R1 + 48R2 + 26R3 + 12R4 + 2R5)/40 4.533 0.648 0.1511
12/56 (140R1 + 90R2 + 46R3 + 42R4)/35 4.243 0.530 0.1414
13/56 (228R1 + 168R2 + 100R3 + 40R4 + 4R)/54 4.623 0.462 0.1284
14/56 (212R1 + 80R2 + 47R3 + 21R4)/45 4.638 0.580 0.1546
15/56 (120R1 + 76R2 + 40R3 + 12R4)/31 4.098 0.512 0.1576
16/56 (568R1 + 236R2 + 142R3 + 64R4)/101 5.603 0.560 0.1648

a R1 ) 0.869, R2 ) 0.247, R3 ) 0.100, R4 ) R5 ) 0.
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hydrocarbon 15/57, having six π-aromatic sextets. In
the lower part of Table 19 we give RE values for a
selection of benzenoids having nine rings, illustrated
in Figure 58. Observe the dramatic decrease in the
number of Kekulé valence structures and the dra-
matic decrease in molecular RE as we move from
cata-condensed benzenoid to peri-condensed ben-
zenoid. Observe also the much greater variation in
K for peri-condensed benzenoids, which can be as low
as 20 and as high as 60.

In Table 20 we have listed RE values for the
benzenoid hydrocarbons shown in Figure 27, which
are the structures with the largest K values among
cata-condensed benzenoids having the same number
of benzene rings. They were reported by Balaban and
co-workers for benzenoids having 46 or less fused
benzene rings.434 The smaller members of this class
were already known to Cyvin and Gutman.435 It is
not surprising to see that all the internal rings in
the benzenoids shown in Figure 27 are the so-called
“kink” rings (in the terminology of Gordon and
Davison439 (GD). The GD algorithm suggests higher
K values for cata-condensed benzenoids molecules
having more “kink” benzene rings.

It is of interest to see that, among these benzenoids
that have the maximal K values, there are some that
do not have the maximal RE as computed by the

conjugated circuits method. In Figure 59 we show two
cata-condensed benzenoids having seven benzene
rings with K ) 41 and K ) 38, the former being the
cata-condensed benzenoid having the maximal K
among cata-condensed benzenoids having seven rings.
The expressions for RE for the two benzenoids shown
in Figure 59 are respectively

These expressions lead to RE values of 4.346 and
4.411 eV, respectively. If we use the values R1 )
0.815, R2 ) 0.302, R3 ) 0.085, and R4 ) 0 as an
alternative, we obtain slightly reduced values for the
RE of these two benzenoids, 4.166 and 4.266 eV,
respectively. However, as we can see, the relative
magnitudes of the RE values have not changed.
Hence, the benzenoid hydrocarbon having the largest
K is not necessarily one that has the largest RE,
contradicting predictions based on the simple pro-
portionality of RE with log K, which suggests the
opposite. This is an unexpected and somewhat sur-
prising result because the first of the two structures
represents a “fully benzenoid” system, according to
Clar, while the second structure involves a migrating

Figure 56. Benzenoid hydrocarbons for which RE is listed in Table 18.

4.537R1 + 1.366R2 + 0.659R3 + 0.195R4

4.474R1 + 1.895R2 + 0.553R3 + 0.079R4
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π-sextet, which is expected to show reduced stability.
However, if we look more closely at the expressions
for their RE, we see that, although the first structure

has larger R1 contributions, these are more than
outweighed by the contributions from conjugated
circuits R2, for which the second structure has 72

Table 19. Expressions for Molecular RE for a Selection of Miscellaneous Benzenoid Hydrocarbons (Shown in
Figure 57) and Benzenoid Hydrocarbons Having Nine Fused Benzene Rings (Shown in Figure 58)

molecule RE expression REa RE/ring REPE

1/57 (26R1 + 16R2 + 5R3 + 2R4 + R5)/10 2.705 0.541 0.1229
2/57 (68R1 + 30R2 + 7R3 + 3R4 + 5R5 + R6)/19 3.537 0.589 0.1360
3/57 (110R1 + 60R2 + 9R3 + 7R4 + 6R5 + 3R6 + R7)/28 3.975 0.568 0.1325
4/57 (86R1 + 28R2 + 12R3 + 4R4 + R5 + R6)/22 3.766 0.628 0.1448
5/57 (90R1 + 34R2 + 12R3 + 2R4)/23 3.818 0.636 0.1468
6/57 (76R1 + 40R2 + 10R3)/21 3.663 0.611 0.1409
7/57 (76R1 + 40R2 + 10R3)/21 3.663 0.611 0.1409
8/57 (44R1 + 30R2 + 14R3 + 2R4)/15 3.136 0.523 0.1206
9/57 (24R1 + 12R2)/9 2.647 0.441 0.1018
10/57 (42R1 + 24R2 + 12R3 + 4R4 + 2R5)/14 3.116 0.519 0.1298
11/57 (24R1 + 18R2 + 12R3 + 6R4)/10 2.650 0.442 0.1205
12/57 (38R1 + 29R2 + 18R3 + 10R4 + 3R5)/14 2.999 0.428 0.1153
13/57 (76R1 + 52R2 + 29R3 + 4R4)/23 3.556 0.508 0.1368
14/57 (100R1 + 40R2 + 10R3 + 6R4)/25 3.911 0.489 0.1222
15/57 (567R1 + 249R2 + 152R3 + 52R4)/102 5.583 0.558 0.1551
16/57 (200R1 + 160R2 + 110R3 + 26R4 + 4R5)/50 4.486 0.449 0.1402

1/58 (592R1 + 256R2 + 76R3 + 126R4)/104 5.628 0.625 0.1481
2/58 (560R1 + 256R2 + 72R3 + 12R4)/100 5.571 0.619 0.1466
3/58 (618R1 + 228R2 + 90R3 + 18R4)/106 5.683 0.631 0.1495
4/58 (60R1 + 48R2 + 36R3 + 24R4 + 12R5)/20 3.380 0.376 0.1127
5/58 (158R1 + 108R2 + 66R3 + 24R4 + 4R5)/40 4.264 0.474 0.1254
6/58 (109R1 + 78R2 + 47R3 + 27R4 + 9R5)/30 4.025 0.447 0.342
7/58 (132R1 + 86R2 + 48R3 + 6R4)/34 4.140 0.460 0.1294
8/58 (202R1 + 116R2 + 74R3 + 26R4 + 2R5)/60 3.527 0.392 0.1037

a R1 ) 0.869, R2 ) 0.247, R3 ) 0.100, R4 ) R5 ) 0.

Figure 57. Miscellaneous benzenoid hydrocarbons for which RE is listed in the upper part of Table 19.
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compared with 56 for the first structure. Hence, while
characterization of Kekulé valence structures with
maximal K appears to be solved, finding benzenoids
which have the maximal RE among systems having
the same number of fused benzene rings appears to
present a bigger challenge.

In the case of strictly peri-condensed benzenoids,
it is less obvious to identify the benzenoids associated
with the maximal K. Cyvin and Gutman435 reported
that the maximal K for a general peri-condensed
system occurs for compounds in which various cata-
condensed branches are added around the pyrene
nucleus. It is therefore of more interest to consider
benzenoids that do not have cata-condensed benzene

rings, that is, each fused benzene ring must have at
least two adjacent already fused benzene rings. Such
benzenoids define the “strictly” peri-condensed sys-
tems. In Figure 60 we show strictly peri-condensed
benzenoids having 10 or fewer fused rings, which
have the maximal K. The expressions for RE, and the
RE and REPE values, for these compounds are listed
in Table 21.

Finally, in Table 22 we give the expressions for RE
for a family of benzenoid compounds, shown in Figure
61, that are the initial members that model a ben-

Figure 58. Benzenoid hydrocarbons having nine rings, for which RE is listed in the lower part of Table 19.

Table 20. Expressions for Molecular RE for the Benzenoid Hydrocarbons Shown in Figure 27, Which Are the
Structures with the Largest K Values among Cata-condensed Benzenoids Having the Same Number of Rings

molecule no. of rings RE expression REa REPE

1/27 3 (10R1 + 4R2 + R3)/5 1.956 0.1397
2/27 4 (26R1 + 6R2 + 3R3)/9 2.708 0.1505
3/27 5 (46R1 + 18R2 + 5R3 + R4)/14 3.209 0.1458
4/27 6 (96R1 + 34R2 + 12R3 + 2R4)/24 3.876 0.1491
5/27 7 (186R1 + 56R2 + 27R3 + 8R4)/41 4.346 0.1449
6/27 8 (346R1 + 128R2 + 45R3 + 8R4)/66 5.103 0.1501
7/27 9 (650R1 + 230R2 + 91R3 + 23R4)/110 5.734 0.1509
8/27 10 (1262R1 + 396R2 + 183R3 + 49R4)/189 6.417 0.1528

a R1 ) 0.869, R2 ) 0.247, R3 ) 0.100, R4 ) R5 ) 0.

Figure 59. Benzenoids with K ) 41 and K ) 38, respec-
tively, illustrating a disagreement in the prediction of RE
on the basis of the empirical log K relationship and the
conjugated circuits model.

Figure 60. “Strictly” peri-condensed benzenoids having
10 or less fused rings and having the maximal K, as
reported by Cyvin and Gutman.79 (RE values are shown
in Table 21.)

3502 Chemical Reviews, 2003, Vol. 103, No. 9 Randić



zenoid polymer made of fused pyrene units, referred
to as “polypyrene fusenes” by Klein, Hite, and
Schmalz.481 The top part of Table 22 shows the fast
growth of K and the increase in the number of
conjugated circuits as the number of pyrene units in
such compounds increases. In the middle part of the
table are given the same formulas, but expressed in
the decimal format, which allows one to see the rate
of increase in the RE as the size of the polymer
increases. From the coefficients of R1, R2, R3, and R4,
one can immediately verify that there is a constant
increment in molecular RE between the successive
members of the family, given by

In the lower part of Table 22 we give the expressions
for the average ring RE, which is almost constant.
This is not surprising, in view of the constant
increment in the RE for the successive members of
the family of compounds. When comparing results on
molecules of different sizes, it is more appropriate to
consider REPE, the quantity introduced by Hess and
Schaad,564 rather than RE. In the last column of

Table 22 we give RE, REPE, and RE/ring based on
the values R1 ) 0.841 eV and R2 ) 0.336 eV,
recommended by Herndon and used by Klein, Hite,
and Schmalz, who used the transfer matrix approach
for calculation of RE. They derived an asymptotic
value for REPE, which is given by

which gives as the limiting REPE for polypyrene
fusene 0.1497 eV.

We end the discussion of RE of benzenoid hydro-
carbons by examining more closely cata-condensed
benzenoid hydrocarbons having seven benzene rings.
In Figure 62 we show the molecular structures of
these benzenoids, where only one of several possible
isoconjugated isomers is shown. In Table 23 we have
listed the expressions for RE and computed RE
assuming R1 ) 0.869 eV, R2 ) 0.427 eV, and R3 )
0.100 eV. We listed benzenoids starting with those
with the smallest K and ending with the largest K
values. Because all compounds have the same em-
pirical formula, C30H18, there is no need to consider
REPE, which varies from 0.071, which is close to the
lower bound on REPE, to 0.152, which is close to the
upper bound on REPE in benzenoid conjugated
hydrocarbons. For benzenoid hydrocarbons having
the same K, we see that, as a rule, the RE increases
with the increase in the count of R1. The only
exception for molecules of Table 23 is the pair of
benzenoids 16/62 and 17/62. Which of the two
compounds will have the larger RE depends on
whether the difference (2R1 - 6R2 - 3R3)/K in RE
between the two is positive or negative. With the
adopted numerical values for R1, R2, and R3 we find
the difference to be rather small, hardly significant:
0.002 eV.

Having expressions for RE for a larger number of
benzenoid isomers allows us to observe regularities

Table 21. Expressions for Molecular RE for the
Benzenoid Hydrocarbons Shown in Figure 60, Which
Are the Structures with the Largest K Values among
Strictly Peri-condensed Benzenoids Having the Same
Number of Rings

molecule RE expression REa REPE

1/60 (12R1 + 8R2 + 4R3 )/6 2.134 0.133
2/60 (42R1 + 26R2 + 12R3)/14 3.151 0.143
3/60 (64R1 + 48R2 + 27R3)/20 3.151 0.143
4/60 (120R1 + 82R2 + 30R3)/31 4.114 0.147
5/60 (172R1 + 118R2 + 62R3)/42 4.400 0.138
6/60 (336R1 + 210R2 + 113R3)/70 5.0736 0.1492
7/60 (343R1 + 191R2 + 100R3)/70 5.0749 0.1493

a R1 ) 0.869 eV, R2 ) 0.247 eV, R3 ) 0.100 eV, R4 ) R5 ) 0.

Table 22. Expressions for Molecular RE for Benzenoids Representing the Initial Members of a Polymeric Family
(Shown in Figure 61)

molecule RE expression RE REa

C16H10 (12R1 + 8R2 + 4R3 )/6 2.134 2.130
C30H16 (140R1 + 90R2 + 46R3 + 4R4)/35 4.243 4.2276
C44H220 (1 224R1 + 776R2 + 402R3 + 46R4)/204 6.351 6.323
C58H28 (9 512R1 + 5 988R2 + 3 124R3 + 400R4)/1 189 8.459 8.422
C72H34 (69 300R1 + 43 440R2 + 22 760R3 + 3 100R4)/6 930 10.571 10.519
C86H40 (484 692R1 + 302 958R2 + 159 186R3 + 22 548R4)/40 391 12.675 12.616

molecule numerical expression for molecular RE REPE REPEa

1/61 2R1 + 1.333R2 + 0.667R3 0.1334 0.1331
2/61 4R1 + 2.571R2 + 1.314R3 + 0.144R4 0.1414 0.1409
3/61 6R1 + 3.804R2 + 1.971R3 + 0.225R4 0.1443 0.1437
4/61 8R1 + 5.036R2 + 2.627R3 + 0.336R4 0.1458 0.1452
5/61 10R1 + 6.268R2 + 3.284R3 + 0.447R4 0.1468 0.1461
6/61 12R1 + 7.501R2 + 3.941R3 + 0.558R4 0.1474 0.1467

molecule RE per benzene ring RE/ring RE/ringa

C16H10 0.5R1 + 0.333R2 + 0.167R3 0.534 0.533
C30H16 0.5R1 + 0.321R2 + 0.164R3 + 0.014R4 0.530 0.528
C44H220 0.5R1 + 0.317R2 + 0.164R3 + 0.019R4 0.529 0.527
C58H28 0.5R1 + 0.315R2 + 0.164R3 + 0.021R4 0.529 0.526
C72H34 0.5R1 + 0.313R2 + 0.164R3 + 0.022R4 0.529 0.526
C86H40 0.5R1 + 0.313R2 + 0.164R3 + 0.023R4 0.528 0.526

a Based on calculations of Klein, Hite, and Schmalz.481

∆RE ) 2R1 + 1.233R2 + 0.657R3 + 0.111R4

REPE∞ ) R1/7 + (12 - 5x2)R2/56
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in their RE. First, we observe that when two ben-
zenoids have the same K, the isomer that has shorter
linearly fused rings has a larger RE. This is the case
with the pairs (4/62, 5/62), (17/62, 18/62), and (19/
62, 20/62). When isomers have linearly fused seg-
ments of the same length, the isomer with a “kink”
ring has a larger K and consequently is expected to
have a larger RE, as is illustrated with the pairs (3/
62, 4/62) and (12/62, 13/62). We also observe a rather
interesting fact that among isomers having the same
K, isomers having a “migrating” Clar’s π-sextet have
larger RE than the isomers with a single Clar
structure. This is illustrated by benzenoids 27/62, 33/
62, and 36/62, which have four π-aromatic sextets,
when compared with 28/62, the pair (34/62, 35/62),
and 37/62, respectively. However, if we compare 27/
62 with 26/62, which has lower RE, this is due to
the fact that 26/62 has only three π-sextets, while
27/62 has four. This particular observation points to
an unexpected empirical rule:

Clar’s Structure Rules: Benzenoid having a single
Clar structure with only aromatic π-sextets and empty
rings, the fully benzenoid systems described by Clar,
are the most stable; benzenoids having several Clar
structures are the next most stable; and benzenoids
having a single Clar structure with rings with iso-
lated CC double bonds are the least stable.

Of course, in cases with “mixed” composition, that
is, benzenoids having “fully benzenoid” fragments,
“migration” fragments, and “fixed” CC double bonds,
a balance between the number of migrating sextets,
the “length” of the migration of the π-sextets, and the
number of isolated CC double bonds will play some
role. The above rule strictly applies only when such
factors are the same; when they are not, as we have
seen when comparing 26/62, which has three π-sex-
tets, with 27/62, which has four π-sextets, a reversal
in the relative stability (that is, RE and REPE) can
occur.

XIII. Non-benzenoid Systems
The benzenoid hydrocarbons considered thus far

were built solely from fused hexagonal rings, and as
a consequence all their conjugated circuits are neces-
sarily of 4n + 2 type, as proved by Cvetković, Gut-
man, and Trinajstić.565 If we consider compounds

built from fused benzene rings but allow the presence
of larger interior “holes”, we may encounter also 4n
conjugated circuits. Such compounds, known as
corannulenes, can be grouped into two classes: those
having only 4n + 2 conjugated circuits, illustrated in
Figure 63, and those having both 4n + 2 and 4n
conjugated circuits, illustrated in Figure 64. In the
top part of Table 24 we show enumeration of conju-
gated circuits for the compounds shown in Figure 63,
including kekulene (the last structure in Figure 63).
Observe that the two perimeters of these molecules,
the inner and outer perimeters, have 4n + 2 π-elec-
trons (n ) 2, 3, and 4), that is, conjugated circuits of
10, 14, and 18 π-electrons. These molecules contain
only aromatic contributions of 4n + 2 conjugated
circuits. In contrast, the compounds shown in Figure
64 have on their peripheries 4n carbon atoms. Hence,
conjugated circuits involving the peripheries of such
structures will necessarily have contributions from
the 4n conjugated circuits.457 However, the smallest
such circuits will have already 12 carbon atoms and
will make a small, if any, negative contribution to
the molecular RE. So, from the practical point of
view, the corannulenes shown in Figures 63 and 64
will show little differences in their properties from
the benzenoids already considered, except for proper-
ties associated with the presence of the inner hydro-
gen atoms. As can be seen from Table 24, the
structures shown in Figure 64 have REPE values (RE
per electron) similar to those of the compounds shown
in Figure 63. The largest REPE values belong to
corannulenes having fewer straight-line (linearly
fused) benzene strips and more “kink” benzene rings
(angularly fused benzene rings). Observe also that
the largest REPE is found for corannulenes 1/63 and
3/63, which have a single Clar structure, while as
we can see, kekulene, which also has a single Clar
structure, shows a reduced REPE. The “departure”
of kekulene from the anticipated higher REPE values
may be due not only to the fact that, from 200 Kekulé
valence structures of kekulene, only 64 have the
highest degree of freedom (df ) 6), but also to the
fact that kekulene has more linearly fused benzene
rings. As previously mentioned, linearly fused rings
make smaller contributions to RE.

Kekulene itself is an interesting compound. We
find here that not only is the number of Kekulé

Figure 61. Initial members of a family of benzenoid hydrocarbons. (RE values are shown in Table 22.)
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Figure 62. Cata-condensed benzenoid hydrocarbons having seven benzene rings. (RE values are shown in Table 23.)

Aromaticity of Polycyclic Conjugated Hydrocarbons Chemical Reviews, 2003, Vol. 103, No. 9 3505



structures of maximal df smaller than the number
of Kekulé structures with smaller df, but also in

Kekulene there are Kekulé valence structures which
have very different df values. In Figure 65 we
illustrate Kekulé valence structures of kekulene
showing different degrees of freedom, varying be-
tween df ) 6 and df ) 2.

A. Biphenylene and Related Non-benzenoid
Systems

The occurrence of 4n conjugated circuits is quite
common in non-benzenoid polycyclic conjugated hy-
drocarbons, both alternants and non-alternants. In
Table 25 we show the decomposition of Kekulé
valence structures for a selection of biphenylene
derivatives, which are alternant non-benzenoid hy-
drocarbons (illustrated in Figure 66). We designated
4n conjugated circuits by Qn and confined enumera-
tion mostly to conjugated circuits of size 4, 8, and 12,
that is, Q1, Q2, and Q3. It is to be expected that such
systems having 4n rings will necessarily have 4n
conjugated circuits. However, in addition to 4n
conjugated circuits, alternant non-benzenoid hydro-
carbons not only may have 4n + 2 conjugated circuits,
but the 4n + 2 conjugated circuits may dominate the
overall properties of these compounds. The 4n + 2
conjugated circuits may arise not only because of the
presence of fused benzene rings that may occur in
such structures but also from two or more fused 4n
rings. Obviously, two adjacent 4n rings necessarily
have 4n + 2 perimeters. Because the contributions
from Qn conjugated circuits decrease molecular RE,
we see that such structures will have a partially
destabilizing anti-aromatic component.

Table 23. Expressions for Molecular RE for a Selection of Cata-condensed Benzenoid Hydrocarbons Having
Seven Fused Benzene Rings (Shown in Figure 62)

molecule RE expression RE molecule RE expression RE molecule RE expression RE

1/62 (14R1 + 12R2 + 18R3 )/8 2.116 15/62 (94R1 + 46R2 + 19R3)/25 3.798 29/62 (134R1 + 58R2 + 19R3)/32 4.146
2/62 (34R1 + 20R2 + 15R3 )/13 2.768 16/62 (96R1 + 56R2 + 24R3)/26 3.833 30/62 (136R1 + 56R2 + 18R3)/32 4.182
3/62 (46R1 + 32R2 + 17R3 )/16 3.099 17/62 (98R1 + 50R2 + 21R3)/26 3.831 31/62 (140R1 + 60R2 + 24R3)/33 4.208
4/62 (50R1 + 34R2 + 18R3 )/17 3.156 18/62 (102R1 + 56R2 + 24R3)/27 3.884 32/62 (140R1 + 62R2 + 20R3)/33 4.211
5/62 (50R1 + 36R2 + 21R3)/17 3.202 19/62 (102R1 + 60R2 + 19R3)/27 3.902 33/62 (142R1 + 76R2 + 20R3)/34 4.240
6/62 (68R1 + 32R2 + 20R3)/20 3.450 20/62 (112R1 + 66R2 + 22R3)/29 3.994 34/62 (146R1 + 62R2 + 26R3)/34 4.258
7/62 (74R1 + 30R2 + 21R3)/21 3.515 21/62 (114R1 + 64R2 + 13R3)/29 4.006 35/62 (146R1 + 64R2 + 20R3)/34 4.255
8/62 (76R1 + 44R2 + 21R3)/22 3.591 22/62 (116R1 + 56R2 + 22R3)/29 4.029 36/62 (148R1 + 78R2 + 18R3)/35 4.277
9/62 (80R1 + 48R2 + 23R3 )/23 3.638 23/62 (118R1 + 66R2 + 23R3)/30 4.038 37/62 (154R1 + 60R2 + 21R3)/35 4.307
10/62 (82R1 + 46R2 + 14R3 )/23 3.653 24/62 (118R1 + 68R2 + 20R3)/30 4.045 38/62 (156R1 + 74R2 + 20R3)/36 4.329
11/62 (86R1 + 46R2 + 25R3)/24 3.722 25/62 (126R1 + 44R2 + 22R3)/30 4.085 39/62 (164R1 + 70R2 + 22R3)/37 4.379
12/62 (86R1 + 52R2 + 20R3)/24 3.732 26/62 (124R1 + 70R2 + 17R3)/31 4.089 40/62 (170R1 + 72R2 + 21R3)/38 4.411
13/62 (90R1 + 56R2 + 23R3)/25 3.774 27/62 (126R1 + 64R2 + 22R3)/31 4.113 41/62 (192R1 + 48R2 + 24R3)/40 4.528
14/62 (92R1 + 50R2 + 21R3)/25 3.776 28/62 (130R1 + 52R2 + 23R3)/31 4.133 42/62 (196R1 + 56R2 + 27R3)/41 4.557

Figure 63. Compounds built from fused benzene rings
allowing the presence of larger interior “holes”, in which
we encounter only 4n + 2 conjugated circuits. (RE values
are shown in Table 24.)

Figure 64. Compounds built from fused benzene rings
allowing the presence of larger interior “holes”, in which
we encounter both 4n + 2 and 4n conjugated circuits. (RE
values are shown in the lower part of Table 24.)

Table 24. Expressions for Molecular RE for Benzenoid-like Compounds Built from Fused Benzene Rings but
Having Non-benzenoid 4n + 2 and 4n “Holes” (Shown in Figures 63 and 64, Respectively)

molecule RE expression REa REPE

C32H16 1/63 (156R1 + 100R2 + 80R3)/40 4.207 0.131
C40H20 2/63 (300R1 + 192R2 + 138R3)/68 4.734 0.118
C40H20 3/63 (586R1 + 366R2 + 236R3)/104 5.993 0.150
C40H20 4/63 (408R1 + 264R2 + 162R3)/104 4.192 0.105
C48H24 5/63 (516R1 + 402R2 + 258R3)/112 5.121 0.107
C48H24 kekulene (1188R1 + 696R2 + 174R3)/200 6.108 0.085

C36H18 1/64 (222R1 + 256R2 + 72R3 + 4Q3)/52 5.064 0.141
C44H22 2/64 (534R1 + 408R2 + 178R3 + 4Q4)/106 5.4963 0.125

a R1 ) 0.869 eV, R2 ) 0.247 eV, R3 ) 0.100 eV.
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B. Non-benzenoid Systems with Odd Rings
Having Only 4n + 2 Conjugated Circuits

In Table 26 we show the decomposition of Kekulé
valence structures for a selection of non-alternant
non-benzenoid hydrocarbons having odd rings (il-
lustrated in Figure 67). They include azulene (1/67),
acepleiadylene (8/67), and corannulene (15/67). Ob-
serve that all of the non-benzenoid systems shown
in Figure 67, despite having odd-member rings, have

only 4n + 2 conjugated circuits. This suggests their
stability and aromaticity. Corannulene, synthesized
in 1966 by Barth and Lawton,566 is an example of an
aromatic non-benzenoid with high REPE, although
it has an odd number of π-electrons on its periphery,
thus defying the perimeter rule of aromaticity, which
besides being wrong in some instances did not
anticipate the possibility of molecules having neither
4n + 2 nor 4n carbon atoms on their periphery.

Figure 65. Kekulé valence structure of kekulene having different degrees of freedom.

Table 25. Expressions for Molecular RE for the Non-benzenoid Biphenylene Structures Shown in Figure 66

molecule decomposition (average) REa molecule decomposition (average) REa

1/66 (8R1 + 2Q1 + 4Q2 +Q3)/5 0.877 10/66 (90R1 + 9R2 + 2R3 + 36Q1 + 64Q2 + 16Q3)/31 1.248
2/66 (14R1 + 5R2 + 2Q1 + 4Q2 + 3Q3)/7 1.492 11/66 (92R1 + 6R2 + 49Q1 + 73Q2 + 14Q3)/34 0.840
3/66 (16R1 + 4R2 + 4Q1 + 6Q2 + 2Q3)/8 1.330 12/66 (92R1 + 6R2 + 49Q1 + 73Q2 + 14Q3)/34 0.840
4/66 (24R1 + 12R2 + 2Q1 + 4Q2 + 3Q3)/12 2.188 13/66 (94R1 + 6R2 + 54Q1 + 78Q2 + 13Q3)/35 0.734
5/66 (26R1 + 12R2 + 4Q1 + 6Q2 + 6Q3 +Q4)/11 1.976 14/66 (290R1 + 20R2 + 180Q1 + 249Q2 + 44Q3)/87 0.722
6/66 (32R1 + 12R2 + 8Q1 + 5Q2 + 2Q3)/13 1.880 15/66 (38R1 + 8R2 +R3 + 8Q1 + 10Q2 + 3Q3)/14 1.918
7/66 (28R1 + 2R2 + 2R3 + 8Q1 + 16Q2 + 4Q3)/12 1.238 16/66 (56R1 + 8R2 + 20Q1 + 32Q2 + 10Q3)/21 1.355
8/66 (28R1 +R2 + 12Q1 + 20Q2 + 4Q3)/13 0.837 17/66 (80R1 + 2R3 + 20Q1 + 41Q2 + 14Q3)/25 1.778
9/66 (88R1 + 6R2 + 2R3 + 28Q1 + 55Q2 + 13Q3)/29 1.501 18/66 (156R1 + 68R2 + 18R3 + 52Q1 + 67Q2 + 40Q3)/37 2.779

a R1 ) 0.841 eV, R2 ) 0.336 eV. Q1 ) -0.650 eV, Q2 ) -0.260 eV.

Figure 66. Selection of biphenylene derivatives representing alternant non-benzenoid hydrocarbons. (RE values are shown
in Table 25.)
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Corannulene has 11 Kekulé valence structures, all
having df ) 2, and thus all 11 contribute to Clar’s
structure of corannulene, which has two migrating
π-sextets.

Because all of the compounds shown in Figure 67
possess only 4n + 2 conjugated circuits, they all are
expected to be fully aromatic, even if they may show
considerable departure in their properties from
benzene s the prototype of aromaticity. However, we
should add, although this may be viewed as a
semantic question, that the similarity to benzene
should not be used to govern the characterization of
aromaticity, even though benzene may be prima facie
an example of an aromatic compound. When we are
interested in the similarity of a compound to benzene,
we should use terms like benzenoid character or
perhaps benzenoticity (if linguists do not object), and
leave aromaticity as a broader concept encompassing
compounds having 4n + 2 conjugated circuits, which
besides benzene includes, for instance, Sondheimer’s
18 π-electron annulene, the smallest annulene after
benzene that can attain planarity without severe

non-bonded H-H interactions of the inner hydrogens.
The [18]annulene, in contrast to benzene, in which
all CC bonds are equivalent, has two types of sym-
metry-non-equivalent CC bonds. The MINDO calcu-
lations of Dewar et al.567 and the molecular mechan-
ics calculations568 show slight differences between the
non-equivalent aromatic CC bonds, although the
difference is rather small.

We mentioned earlier the difficulty of the perimeter
model, not only, as the case of corannulene il-
lustrates, in that it gives wrong answers but also
because “it misleads one on believing that a large
molecular periphery plays a critical role for determin-
ing aromatic and other molecular properties while the
crucial role is played by smaller rings which can
sustain conjugated circuits distribution.” 569

C. Non-benzenoid Systems with Odd Rings
Having 4n Conjugated Circuits

Non-alternant non-benzenoid hydrocarbons can
have, besides 4n + 2 conjugated circuits, also 4n
conjugated circuits, as is the case with the structures
shown in Figure 68, which include aceheptylene (1/
68), azupyrene (2/68), aceazulene (3/68), dicyclohep-
tapentalene (4/68), azulenoheptalene (5/68), as-
azupyrene (6/68), pyracylene (7/68), and other systems
built from five- and six-member rings. Decomposition
of their Kekulé valence structure in conjugated
circuits is shown in Table 27. Hence, structures that
may appear visually similar to those shown in Figure
67 are in fact essentially quite different, at least when
conjugated circuits of such structures are considered.
Hafner553-555,570,571 apparently was the first to observe
difficulties in synthetic efforts toward obtaining some
of these odd-ring systems, which, in contrast to the
compounds shown in Figure 67, do have “anti-
aromatic” contributing conjugated circuits.

It is regrettable that there are so few calculations
of higher quality on a sizable collection of non-
benzenoid hydrocarbons and non-alternant non-ben-
zenoid systems that would allow a better estimate
of the contributions made by 4n conjugated circuits.
Therefore, better and more precise parametrization
of various Qn terms, which would be possible if there
were reliable calculations of the resonance energies
of these molecules, is lacking. The challenge here for
theoretical chemistry is not so much in making
quantum chemical calculations as such, but to be able
to extract from such calculations a non-observable
known as RE.

D. Summary on Applications of the Conjugated
Circuits Method to Hydrocarbon and Carbon
Chemistry

The conjugated circuits model was successfully
applied to a variety of conjugated systems. In Table
28 we list the types of molecules studied so far using
the conjugated circuits model. This table represents
a slightly modified and updated version of a table
first shown in a paper on quantum mechanical and
computational aspects of the conjugated circuits
model by Trinajstić, Nikolić, and Klein.572 Inciden-
tally, that paper was “Dedicated to Professor Milan

Table 26. Expressions for Molecular RE for
Non-alternant Non-benzenoid Hydrocarbons with
Odd Rings Having 4n + 2 Conjugated Circuits (Shown
in Figure 67)

molecule RE expression RE REPE

1/67 (2R2)/2 0.317 0.032
2/67 (2R1 + 2R2 + 2R3)/3 0.837 0.060
3/67 (2R1 + 2R2 + 2R3)/3 0.837 0.060
4/67 (2R3)/2 0.111 0.008
5/67 (4R2 + 2R4)/3 0.423 0.023
6/67 (4R2 + 2R4)/3 0.423 0.023
7/67 (2R3)/2 0.111 0.008
8/67 (4R1 + 2R2 + 6R3)/4 1.152 0.072
9/67 (4R1 + 4R2 + 4R3)/4 1.255 0.078
10/67 (4R1 + 4R2 + 4R3)/4 1.255 0.078
11/67 (2R3)/2 0.111 0.008
12/67 (8R1 + 8R2 + 4R3 + 4R4)/6 1.599 0.080
13/67 (8R1 + 8R2 + 4R3 + 4R4)/6 1.599 0.080
14/67 (8R1 + 8R2 + 4R3 + 4R4)/6 1.599 0.080
15/67 (30R1 + 20R2 + 5R3)/11 2.882 0.144

Figure 67. Non-alternant non-benzenoid hydrocarbons
having only 4n + 2 conjugated circuits. (RE values are
shown in Table 26.)

3508 Chemical Reviews, 2003, Vol. 103, No. 9 Randić



Randić for enriching theoretical chemistry with the
elegant concept of conjugated circuits.” On that count,
I would like to mention that a few of my papers
dealing with conjugated circuits also have dedica-
tions. The paper on the resonance energy of very
large benzenoid hydrocarbons507 was “Dedicated to
Linus Pauling (Nobel Prize for Peace 1962 and Nobel
Prize for Chemistry 1954) in appreciation of his
outstanding contributions to structural chemistry and

his untiring efforts to end war.” A paper on “Local
Aromatic Properties of Benzenoid Hydrocarbons” 508

was quite fittingly “Dedicated to Professor Eric Clar,
doyen of benzenoid chemistry, whose work inspired
much of the recent graph theoretical interest in
aromaticity.” Finally, a more recent paper on “Giant
Benzenoid Hydrocarbons. Supernaphthalene Reso-
nance Energy” 573 was “Dedicated to Professor Klaus
Müllen, the pioneer of giant hydrocarbons,” for obvi-
ous reasons.

XIV. Quantum Chemical Justification of the
Conjugated Circuits Model

The mathematical equivalence of the quantum
mechanical approach of Simpson and Herndon and
the graph theoretical approach based on conjugated
circuits offers a quantum chemical justification for
the conjugated circuits model. Klein and Trinajstić
were the first to outline an alternative, more tradi-
tional quantum chemical derivation of the conjugated
circuits model via the Pauling-Wheland valence
bond model, which follows from the usual Schröd-
inger equation in a sequence of steps.7,8 As Klein has
pointed, out this approach exhibits proper many-body
size-extensivity for energies, “with the present con-
jugated-circuit formulas being obtained as Hamilto-
nian expectations (for reasonable wave function an-
satz).” 545 In contrast, some semi-empirical quantum
chemical approaches as well as some graph theoreti-
cal approaches fail to comply with size-extensivity.
Thus, for example, “the presumption that the total
Kekulé structure count is proportional to the reso-
nance energy so fails. Also the quantum-chemical
technique of double-excitation-limited configuration
interaction fail.” (Footnote 8 in ref 545).

Size-extensivity is expected of good approxima-
tions. As Klein534 pointed out in his paper on chemical
graph theoretical cluster expansion, the “limited CI”
(configuration interaction) fails in this regard in
comparison with the single configuration (Hartree-
Fock) wave function. Size-extensivity can be defined
as follows:

Definition: An approximation Xa for a general
additive scalar quantity X is size-extensive relative
to another approximation Xb if the difference Xa - Xb
scales linearly with the number of sites of the system
as this number becomes large.

Figure 68. Non-alternant non-benzenoid hydrocarbons having both 4n + 2 and 4n conjugated circuits. (RE values are
shown in Table 27.)

Table 27. Expressions for Molecular RE for
Non-alternant Non-benzenoid Hydrocarbons Having
Both 4n + 2 Conjugated Circuits and 4n Conjugated
Circuits (Shown in Figure 68)

molecule RE expression RE REPE
arom.
(%)

1/68 (4R2 + 2Q3)/3 0.527 0.037 85.8
2/68 (8R2 + 2R3 + 2Q3)/4 0.645 0.040 93.5
3/68 (4R2 + 2Q2)/3 0.275 0.023 61.9
4/68 (8R2 + 2R3 + 2Q2)/4 0.579 0.036 83.9
5/68 (6R2 + 4Q3 + 2Q4)/4 0.386 0.021 81.1
6/68 (6R2 + 2R3 + 2Q2 + 2Q3)/4 0.375 0.023 70.6
7/68 (4R1 + 2R2 + 6Q3)/4 0.851 0.061 86.3
8/68 (4R1 + 2Q2 + 4Q3 + 2Q4)/4 0.626 0.039 66.2
9/68 (8R1 +Q2 + 4Q3 + Q4)/5 1.207 0.075 91.2
10/68 (8R1 + 4Q4 + Q5)/5 1.323 0.066 100.0

Table 28. Types of Molecules Studied Using the
Conjugated Circuits Model

Polycyclic Conjugated Hydrocarbons
benzenoid hydrocarbons polyacenes
macrocyclic benzenoid systems benzoannulated annulenes
giant benzenoid hydrocarbons phenylenes
helicenes corannulenes

Related Systems
excited benzene structures polycyclic conjugated anions
benzenoid radicals Möbius systems
polycyclic conjugated cations

Extended Conjugated Systems
benzenoid polymers conjugated polymers

Elemental Carbon Systems
buckminsterfullerene 2-D carbon networks
fullerenes toroidal structures
graphite conic structures

Heterocyclic Conjugated Systems
heterocyclic s having oxygen oxacarbanions
heterocyclic s having nitrogen polycyclic quinones
heterocyclic s having sulfur

Inorganic Systems
superconductors zeolites
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Size-extensivity is just one of the requirements that
a good model should satisfy s but that alone is not a
guarantee of a good model. A model should offer an
acceptable numerical characterization of molecules,
even if they are of empirical origin. For example,
there is no simple apparent understanding why log
K should offer a quite good approximation for mo-
lecular RE for relatively smaller molecules s but, as
shown be Sheldrake, Herndon, and Gutman,432 it
does. From this point of view, the model of conjugated
circuits could also be viewed as an empirical scheme
that offers satisfactory molecular RE. However, the
fact that a model evolved from empirical consider-
ations does not mean that it may not have deeper
theoretical justification s that at the time of its
“discovery” was not recognized. This is precisely the
case with the conjugated circuits model, for which
Klein, Trinajstić, and co-workers found the “missing”
connection to quantum theory. In one of their con-
tributions on the fundamentals of the conjugated
circuits model, Trinajstić et al. wrote: “The founda-
tions of the conjugated-circuit model appear to be
firmly rooted in the framework of the VB theory.
However, the application of conjugated-circuit ideas
to high temperature superconductors provides an
opportunity for the further development and refine-
ment of this model and its novel applications.” 574

It is important to bring the above messages of
competent theoretical chemists who have been in-
volved heavily in various aspects of VB theory to the
attention of readers, so that there is no doubt left
that the graph theoretical approach of conjugated
circuits, although it was introduced through empiri-
cal considerations of molecular RE (itself a non-
observable quantity), represents a legitimate theo-
retical model which is rooted in traditional quantum
chemical approaches. This is important not only to
help to remove the notion of “qualitativeness” from
the conjugated circuits model but also because later
we will outline a quantum chemical justification of
Clar’s aromatic sextet approach using the conjugated
circuits model: We have seen above that the conju-
gated circuits model is a bona fide theoretical tool
for chemical structure, neither less nor more legiti-
mate than most other quantum chemical approaches.
Klein, Seitz, and Schmalz recently gave an overview
of conjugated circuits computations for conjugated
hydrocarbons.575 In particular, they extend the core
approach of the conjugated circuits method via a
“transfer matrix” scheme for enumerations of Kekulé
valence structures and conjugated circuits of different
size. This is particularly important for large systems,
including fullerenes, to ameliorate the explosive
growth rate in computational time as sizes increase.

More on the Correlation of Quantum Chemi-
cal and Graph Theoretical RE. A closer look at
the correlation shown in Figure 51 shows that two
points appear slightly “off” the line. They correspond
to tetracene and pyrene, with residuals +0.070 and
-0.043, respectively, which are visibly larger than
the residuals of the remaining benzenoids of Table
13. In line 4 of Table 14, we show the statistic for a
regression in which tetracene, being an outlier, was
removed. As we can see from a comparison of lines 3

and 4 of Table 14, which give the statistical param-
eters of the regression of RE computed quantum
chemically and derived from graph theoretical con-
siderations, after removal of tetracene the standard
error has been halved, the correlation coefficient
markedly improved, and the Fisher ratio increased
by about a factor of 4. The improvement in the
statistical parameters strongly suggests that there
is something “peculiar” about tetracene. Hence, we
may be justified in eliminating tetracene in order not
to influence the computed parameters R1, R2, and R3.
In line 5 of Table 14, we show the statistic for a
regression in which, besides tetracene, also pyrene,
another outlier, was eliminated. Again, the standard
error has been improved significantly, though not so
dramatically as before. The correlation coefficient has
further increased and the Fisher ratio increased by
a factor of 2, which strongly suggests that pyrene also
has been “unfairly” influencing the regression. The
improvement in the statistical parameters again
suggests that the SCF MO computed RE for pyrene
deviates slightly from expectations based on conju-
gated circuits, or alternatively that pyrene (just as
tetracene) may have additional structural features
that are not captured by the model of conjugated
circuits. Alternatively, both tetracene and pyrene
may be lacking some typical characteristic that other
benzenoids have. In either case, these two molecules
influence the computation of parameters R1, R2, and
R3 used for computation of RE values of the other
benzenoids of Table 13.

It is legitimate to eliminate outliers so that they
do not influence regression if either data on them is
in error or they have some structural features that
are unique to them, not shared by other members of
the set, and not described well by the descriptors
used. The two cases illustrate the difficulties that one
may encounter when one uncritically adopts proper-
ties of molecules assumed to be aromatic for defini-
tion of aromaticity, or for a selection of the standards
for aromatic prototypes. Such molecules may have
(or lack) some of the features that characterize the
majority of aromatic compounds. For instance, among
the benzenoid hydrocarbons of Table 13, tetracene
is the only structure having four linearly fused
benzene rings. It is possible that contributions from
R4, that are ignored here, have to be taken into
account, but unless such contributions are assumed
to be negative (destabilizing), such a “correction” will
only make things worse for tetracene.

One should be aware that there is always a danger
of “neglect of relevant evidence”, or alternatively,
“Arguing in a way that ignores the importance of
evidence unfavorable to one’s position”,91 when elimi-
nating “outliers”. To be on safe grounds, in Table 29
we have listed the residuals of the regression of SCF
MO resonance energies against the graph theoretical
RE when tetracene alone, and when tetracene and
pyrene are eliminated as outliers (the two central
columns having one and two asterisks as entries,
respectively). As we can see, when we eliminate
tetracene, not only does pyrene remain an outlier but
an additional two compounds, benzo[a]pyrene and
benzo[e]pyrene, which appeared “normal” when all
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14 compounds of Table 14 were considered in mul-
tivariate regression, now show visible deviations
(residuals): +0.026 and -0.012, respectively. When
both tetracene and pyrene were eliminated, the two
benzopyrenes still showed residuals that were visibly
larger than the rest of the benzenoids considered
(+0.018 and -0.015, respectively). Finally, in the
next column of Table 29, we show the residuals when
tetracene, pyrene, and two benzopyrenes are elimi-
nated from the regression, leaving the regression
based now on only 10 benzenoids of the original 14
considered. Removal of the four compounds made an
enormous improvement in the statistical parameters
(shown in the last three rows of Table 14). All the
residuals are well within twice the magnitude of the
standard error. The Fisher ratio (F) has increased
by a factor of over 60 in comparison with the initial
value of F. In the last column of Table 29 are given
computed RE values for the 10 benzenoids that
survived statistical “cleansing”.

Observe the unprecedented improvement in the
statistical parameters of the “cleansed” regression
based on 10 benzenoids. The standard error is about
10 times smaller than when all 14 benzenoids are
used in a regression, and the Fisher ratio has
increased by a factor of 15. The numerical values for
the parameters R1, R2, and R3 changed somewhat
when various outliers were disregarded, but these
changes remained relatively small. In all cases, the
relative magnitudes of R1, R2, and R3 are approxi-

mately given by the ratio 1:1/3:1/9. Also, the constant
term in all regressions of Table 14, which we have
neglected to mention because it only shifts the scale
for RE slightly and does not influence the relative
RE values, is not changing much. We mention this
“purification” of the correlation not because it is
important for our estimates of the values for R1, R2,
and R3, because these have not changed much.
Rather, we mention this to give credit to M. J. S.
Dewar, who apparently was able to arrive at such
fine-tuning of his MINDO computational schemes
that display extraordinary internal consistency, at
least when applied to the class of benzenoid hydro-
carbons. Clearly, Dewar was able to identify the
significant terms in his approximate quantum chemi-
cal calculations and ignore contributions that are
insignificant for the calculation of molecular RE.

It may be worth mentioning that the “mystery”
about pyrene and two benzopyrenes being outliers
was also found in early calculations of 1H NMR
chemical shifts based on the model of ring cur-
rents using the Hückel-London-Pople-McWeeny
method.576 In summary, we could speculate that
indeed there is something “peculiar” about tetracene
and pyrene (which might have influenced the two
benzopyrenes). The remaining 10 benzenoids, those
shown in Figure 69, show an outstanding correlation
between graph theoretically computed RE (as derived
from the count of conjugated circuits R1, R2, and R3)
and RE obtained from quantum chemical calcula-

Table 29. Residuals in the Regression of SCF MO Resonance Energies and Parameters R1, R2, and R3 for Smaller
Benzenoids, and When One or More “Outliers” Were Removed from the Regression

benzenoid res. res.* res.** res.**** RE (calcd)

benzene +0.002 +0.008 +0.006 +0.005 0.864
naphthalene -0.016 +0.000 -0.003 -0.001 1.324
anthracene -0.018 -0.000 -0.009 -0.003 1.603
tetracene +0.070 * * * *
phenanthrene -0.007 -0.002 -0.003 -0.004 1.937
pyrene -0.043 -0.027 * * *
benzanthracene -0.005 +0.001 -0.002 -0.000 2.291
chrysene -0.005 +0.001 +0.001 +0.001 2.482
benzo[a]pyrene +0.015 +0.026 +0.018 * *
perylene -0.009 -0.002 +0.002 +0.000 2.619
triphenylene +0.018 -0.000 +0.004 -0.002 2.656
benzo[d]pyrene -0.008 -0.012 -0.015 * *
dibenz[a,h]anthracene +0.006 +0.002 +0.002 +0.001 2.947
benzo[ghi]perylene -0.002 +0.005 -0.001 +0.003 3.125

regression coeff 0.99927 0.99959 0.99994 0.99999
standard error 0.0286 0.0137 0.0093 0.0034
Fisher ratio 2 270 9 660 20 587 142 516

Figure 69. Ten benzenoids that show an outstanding correlation between the graph-theoretically computed RE based on
the count of conjugated circuits and the SCF MO calculated RE of Dewar and de Llano.45
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tions. While some may object to the “cleansing”
procedure and may even challenge its legitimacy, and
this is not the place to argue against or for that, the
fact remains that the 10 benzenoid hydrocarbons in
Figure 69 show a remarkable internal agreement
between graph theoretical and quantum chemical
calculations. Is this not worth serious attention in
various quantum chemical circles? Should this not
be enough to alert skeptics to pay attention to
conjugated circuits, which have been ignored by most
theoretical chemists for over 25 years?

XV. On a Diagnostic Use of Conjugated Circuits
The diagnostic potential of the conjugated circuits

model has been tested on computed RE based on
different quantum chemical models.577 In Tables 30
and 31 we have summarized the results of various
semi-empirical quantum chemical calculations of RE
for benzene, naphthalene, and anthracene. All the
methods listed in Table 30 passed the test based on
the requirement that parameters R1, R2, and R3 give
the relative contributions of conjugated circuits de-
creasing monotonically with increasing circuit size,
as calculated using the RE values for the three
benzenoid hydrocarbons. This means that they sat-
isfy the inequality R1 > R2 > R3. Not all of the
methods considered gave the approximate relative
values R1:R2:R3 ) 1:1/3:1/9 found in the conjugated
circuits method. The SCF π-MO method of Dewar
and de Llano,45 of course, satisfies the above condition

because it was used to calibrate the parameters R1,
R2, and R3. The approach of George et al.,578 based
on SCF π-MO heats of atomization and resonance
energy, again as computed by Dewar and de Llano,
also shows a satisfactory performance. Less satisfac-
tory results are obtained for the SPO method of
Dewar and Gleicher44 and an earlier version of the
SCF π-MO method of Lo and Whitehead.579 In both
cases, the contributions of conjugated circuit R3
appear exaggerated.

The approximate quantum chemical methods listed
in Table 31 failed to satisfy the minimal requirement
R1 > R2 > R3 on the relative magnitudes of the
contributing conjugated circuits rings when the RE
values of benzene, naphthalene, and anthracene were
calculated. Apparently, all the approaches listed in
Table 31 overestimate the role of the contributions
arising from R3. Recall that the same thing happened
with the calculations of Jiang and Li, which are exact
VB calculations. This may suggest that the failure
of the methods listed is not necessarily due to
crudeness of the model but rather inadequacy of the
procedure chosen for calculation of RE. The “lengthy”
list of unsatisfactory approximate methods clearly
points to subtleties involved in the development of
approximate quantum chemical schemes. It is not
surprising, then, that some such schemes, like Dew-
ar’s MINDO, have undergone several modifications
and revisions and apparently reached respectable
internal consistency in the case of benzenoid hydro-
carbons s judging by the high regression correlation
shown in Table 29 for the 10 smaller benzenoids.

XVI. Resonance Graphs
We should recall that Herndon, in his structure-

resonance theory,164 employed two molecular inte-
grals, γ1 and γ2, which give interaction terms between
Kekulé valence structures differing in the location
of three CC double bonds within the same benzene
ring, and in the location of five CC double bonds in
two adjacent benzene rings, respectively. Because the
approach of Herndon and the conjugated circuits
model could be made mathematically equivalent,
Herndon’s molecular integrals γ1 and γ2 correspond
to contributions from conjugated circuits R1 and R2,
respectively (when they are identically param-
etrized). If we return to the upper part of Table 14,
which shows the stepwise regression of RE when R1,
R2, and R3 are used as variables in multivariate
regression, we see that R1 and R2, to a great extent,
capture most of the contributions of various Kekulé
valence structures to molecular RE. In his calcula-
tions of RE values of smaller benzenoid hydrocar-
bons, Herndon used only integrals γ1 and γ2. Inclu-
sion of contributions from R3 (or alternatively γ3), as
can be seen from Table 14, decreases the standard
error for the regression somewhat, but not dramati-
cally. Glidewell and Lloyd580,581 came to the similar
conclusion that only local “benzene” and “naphtha-
lene” moieties play important roles. They based their
considerations in describing the aromaticity of ben-
zenoid hydrocarbons on the MNDO study of bond
orders for select polycyclic benzenoid hydrocarbons.
This suggests that γ1 and γ2 are dominant for

Table 30. Semi-empirical Quantum Chemical
Calculations That Passed the Test by Producing the
Correct Relative Magnitudes for the Graph
Theoretical Parameters R1, R2, and R3

method benz. naph. anth. R1 R2 R3

SPO 1.32 2.28 3.08 1.32 0.78 0.63
SCF π-MO 1.32 2.28 3.09 1.32 0.79 0.64
SCF π-MO 2.05 3.69 5.17 2.05 1.44 1.33
SCF π-MO 0.87 1.32 1.60 0.87 0.25 0.10
DRE 0.93 1.48 1.90 0.93 0.36 0.29
ring additivity 0.91 1.48 1.90 0.91 0.40 0.27
SCF p-MO 0.90 1.46 1.77 0.98 0.23 0.16
resonance theory 0.84 1.35 1.60 0.84 0.35 0
log K 0.82 1.30 1.64 0.82 0.31 0.20
ISE 0.92 1.45 1.86 0.92 0.34 0.28
IMOSE 0.93 1.46 1.81 0.93 0.34 0.18
HMOSE 0.93 1.48 1.85 0.93 0.37 0.20

Table 31. Semi-empirical Quantum Chemical
Calculations That Did Not Pass the Test by
Producing the Correct Relative Magnitudes for the
Graph Theoretical Parameters R1, R2, and R3

method benz. naph. anth. R1 R2 R3

VB 1.56 2.65 3.63 1.56 0.85 0.86
HMO* 2.00 3.68 5.31 2.00 1.53 1.58
VB 1.56 2.88 4.21 1.56 1.19 1.35
HMO + overlap 1.56 2.72 3.82 1.56 0.96 1.02
ring count* 1.56 2.60 3.64 1.56 0.78 1.04
additivity DRE 0.91 1.44 2.00 0.91 0.33 0.60
HMO variation* 0.39 0.55 0.66 0.39 0.05 0.06
HMO variation* 0.44 0.56 0.63 0.44 -0.04 0.02
IMOSE* 0.92 1.34 1.67 0.92 0.17 0.25
HMOSE* 0.92 1.49 1.97 0.92 0.40 0.40
Z number* 0.28 0.37 0.46 0.28 0 0.11
TRE* 0.27 0.39 0.48 0.27 0.04 0.06
TRE* 0.28 0.39 0.48 0.28 0.03 0.06
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determining aromatic contributions, just as we found
earlier that Q2 and Q3 are dominant for anti-aromatic
contributions (in view of the questionable presence
of Q1).

Models based on “benzene” and “naphthalene”
moieties, or more correctly based on the molecular
integrals γ1 and γ2 or the conjugated circuits R1 and
R2, have an advantage in being simpler and avoiding
ambiguities associated with larger conjugated cir-
cuits, which can be of different shapes. Already in
the case of R3, conjugated circuits having 14 π-elec-
trons may the have shapes of the periphery of
anthracene, phenanthrene, or pyrene. Do they make
the same contributions to molecular RE? This prob-
lem was discussed by Trinajstić, Nikolić, and Klein,534

who suggested that conjugated circuits of different
shapes make different contributions to RE. There is
no a priori reason that they make identical contribu-
tions, but before this question is firmly settled, it
would be desirable to have very accurate quantum
chemical calculations and a very reliable protocol for
extracting RE from such calculations for large num-
bers of benzenoid hydrocarbons s both of which are
currently unavailable. Again, the question is not
whether very accurate computations on a larger
collection of benzenoid hydrocarbons can be made,
because sooner or latter they will be made. The
question is how can one extract, with sufficient
precision, a non-observable quantity to be interpreted
as molecular RE from such calculations. What one
needs here are well-defined algorithms that will
“translate” results of ambitious MO calculations in
terms of valence bond (VB) and graph theory (GT)
concepts, such as conjugated circuits. That this is
possible was demonstrated by Polansky and Der-
flinger 35 years ago in their pioneering work on the
interpretation of MO results in terms of Clar struc-
tures.582

The first step, just the use of R1 alone, already gives
a fair correlation between graph theoretical and SCF
MO resonance energy, as can be seen from the first
row of Table 14. The numbers in the columns
indicated by R1, R2, R3, and “const”, in Table 14 are
the coefficient in the regression equation,

respectively. Here RE is expressed in electronvolt
units, and thus the constant term, being rather small,
can practically be neglected. The regression using R1
alone is satisfactory from a qualitative point of view.
Thus, the count of only π-sextets in a set of Kekulé
valence structures already captures the most impor-
tant characteristics of benzenoids systems. We will
see later that such a simple and elegant, but not
simplistic, characterization of benzenoid hydrocar-
bons parallels to a great extent Clar’s notion of
aromatic π-sextets. Observe, however, the more vis-
ible change in the computed values for R2 (or γ2)
contributions when instead of three parameters one
uses two parameters. This illustrates why Herndon’s
approach based on only two parameters still work
quite well. When the contributions of R3 are ne-
glected, R2 compensates by increasing its value by
approximately 10%. This apparently works because

for many benzenoids the numbers of conjugated
circuits R2 and R3 parallel each other to a consider-
able degree (see Table 15).

In Figure 3 at the beginning of this review, we
illustrated, for the six Kekulé valence structures of
pyrene, the quantum chemical resonance interaction
graphs of Herndon, in which the Kekulé valence
structures used in the calculations are related by two
kind of edges. Quantum chemical interactions be-
tween valence structures, which differ only in the
position of CC double and single bonds in one
benzene ring, are associated with the interaction
integral γ1, while if the structures differ in the
positions of five CC double and single bonds in two
adjacent benzene rings, they are characterized by the
interaction integral γ2. If we confine our attention
only to the interaction integral γ1, which is the same
as confining our attention only to conjugated circuits
R1, then the interaction graphs of Herndon reduce
to simpler graphs having only one type of edge. In

RE ) a1R1 + a2R2 + a3R3 + constant

Figure 70. Simplified interaction graphs, referred to as
“resonance” graphs, for the six Kekulé valence structures
of pyrene.
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Figure 70 we show for the six Kekulé valence
structures of pyrene the simplified interaction graph,
referred to as the “resonance” graph. In Figure 71
we have illustrated a number of “resonance” graphs
for a selection of families of smaller benzenoid
hydrocarbons, as reported in refs 337-339. Observe
from Figure 71 that resonance graphs of structurally
related benzenoids, when similarly oriented, show
some regularities. Once the regularity of the pattern
characteristic of smaller graphs is recognized, one can
construct resonance graphs for larger members of the
family. Moreover, from the regularity of such pat-
terns within a family of resonance graphs, one may
even be able to construct recursion relations for the
Kekulé structure count for larger members of the
family.

These simplified resonance interaction graphs have
interesting mathematical structures. The number of
vertices is given by the number of Kekulé valence
structures. In Figure 72 we have illustrated the

resonance graph of benzo[ghi]perylene, the 14 va-
lence structures of which are shown in Figure 15. In
Figure 72, on the right, we used the same labels as
in Figure 15 to identify the individual Kekulé valence
structures that result in the resonance relationship.

Figure 71. “Resonance” graphs for a selection of families of smaller benzenoid hydrocarbons.337-339

Figure 72. “Resonance” graphs of benzo[ghi]perylene. In
the right diagram, all Kekulé valence structure of benzo-
[ghi]perylene have been identified using the labels of
Figure 15.
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The first thing to observe is that the degree of vertices
in Figure 72 is determined by the number of the
smallest conjugated circuits R1 in each structure.
Hence, the central vertex in the resonance graph with
the degree d ) 5 belong to the Fries valence structure
A. The terminal vertex of degree d ) 1 belongs to
the anti-Fries valence structure N. From Figure 72
we see that all resonance graphs are built from
fragments that represent n-dimensional cubes. For
n ) 1, the resonance graph reduces to an edge, which
can be viewed as a “one-dimensional cube”. For n )
2 we have a square graph or 2-D cube, for n ) 3 we
have a 3-D cube, for n ) 4 we have a four-dimensional
cube, etc. Graphs built by fusion of n-dimensional
cubes are known in graph theory as “median”
graphs.583-586 They may involve combinations of
cubes of different n, as is the case with the resonance
graphs shown in Figure 72, which belong to benzo-
[ghi]perylene.

The resonance graphs of smaller benzenoid hydro-
carbons were apparently first considered by Gründler
of the Martin-Luther University of Halle-Wittenberg
(then in East Germany), who published his work in
the science journal of that University.337 We redis-
covered these graphs a dozen years later. Just as we
were unaware of this work of Gründler for many
years, apparently he was also not aware of our work.
Thus, in the same publication, on what we now call
resonance graphs, he reports on the graph theoretical
ring indices for a few smaller benzenoids that he
apparently rediscovered independently several years
after our publication (and that of Aihara).587

Insights That Simple Models Offer. A question
can be raised of why one should consider “simpler”
models, such as calculation of RE by using only R1,
or only R1 and R2, when at not much greater effort
one can consider models using R1, R2, and R3 (and if
necessary even higher contributions that are ne-
glected here). Similarly, one can question why, in this
age of ab initio calculations, one is still discussing
semi-empirical MO and VB methods. We should
remind the reader of the opening quotation, at-
tributed to Parr, to the section of this review discuss-
ing approximate versus ambitious calculations. Ap-
parently, what such critics overlook is not only the
“diagnostic” value of simpler molecular approaches
but also the fact that simpler computations are more
likely to offer interpretation of the results obtained
by elaborate calculations.

Let us illustrate the merits of simple approaches
on a comparison of the bond orders as computed by
the HMO method and the more elaborate Pariser-
Parr-Pople (PPP) method, which represents an SCF
MO model. That the two methods will give different
results for the corresponding bond orders is to be
expected. In Figure 73, on the left, we have indicated
for phenanthrene the differences between the HMO
and PPP bond orders. We have assigned the plus and
the minus signs to CC bonds for which the bond
orders have increased or decreased, respectively,
when going from the HMO to the PPP. An increase
in a bond order signifies a decrease in the corre-
sponding CC bond length. Thus, CC bonds indicated
by plus signs in Figure 73 have in fact became

somewhat shorter in PPP calculations. In other
words, such bonds have increased their CdC double
bond character. The opposite is the case with CC
bonds having the minus sign, which have increased
their CsC single bond character. If we now replace
the plus and minus labels of the CC bonds of
phenanthrene by CdC and CsC signs, we obtain the
Kekulé valence structures shown on the right in
Figure 73.588 Observe that the Kekulé valence struc-
ture of phenanthrene obtained in this way has three
Kekulé benzene rings; that is, it is the valence
structure that Fries recognized as “the most impor-
tant”. In Figure 74 we show similar results for a
selection of smaller benzenoid hydrocarbons consid-
ered in ref 588. In all cases, comparison of the bond
orders between the HMO and the PPP, when trans-
formed to changes in CC bond character, results in
a single Kekulé valence structure of each of the
benzenoids considered, and the resulting structure
is the Fries valence structure. In the case of mol-
ecules having two symmetry-equivalent Fries valence
structures (e.g., pyrene, ovalene), the resulting va-
lence structure is obtained by their superposition. We
think that it is highly significant that all the result-
ing Kekulé valence structures, when comparing HMO
with PPP, are the Fries Kekulé valence structures5,6

of the benzenoids considered. Clearly, all this is not
accidental.

The numerical details of both approximate meth-
odologies, the HMO and the PPP methods, are not
as important here as the conceptual novelty that
relates two MO theories to a very special Kekulé
valence structure. The comparison of the HMO and
the PPP methods suggests that electron repulsion,
which has been incorporated in the PPP approach but
has been absent from the simple Hückel MO ap-
proach, may be a factor in contributing to the relative
importance of Fries Kekulé valence structures. In

Figure 73. The differences between the HMO and the PPP
bond orders illustrated on phenanthrene (left). Plus and
minus signs indicate CC bond lengths that have decreased
and increased, respectively. When the changes are inter-
preted as increased CdC and CsC bond character, the
Fries structure (right) of the molecule is obtained.

Figure 74. Dominant Kekulé structures (Fries structures)
obtained from a comparison between the HMO and the PPP
bond orders for smaller benzenoid hydrocarbons.588
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other words, the comparison of the HMO and the PPP
methods offers an explanation of the empirical Fries
rule. The Fries rule has pointed toward the most
important Kekulé valence structures but did not say
why structures with the maximal number of benzene
rings are the most important. From the above, it
appears that the Fries structures, in comparison with
other Kekulé valence structures, better accommodate
electron-electron repulsion.

It is of interest to mention here that, besides the
pioneering work of Polansky and Derflinger582 on the
interpretation of MO calculations in terms of Clar’s
structures, there have been several publications in
which the results of MO calculations were related to
Kekulé valence structures. Thus, for example, Eng-
land and Ruedenberg589-591 considered localization of
molecular orbitals and found that local orbitals point
to a single Kekulé structure or a superposition of
symmetry-equivalent Kekulé structures. They raised
the question, “Why is the delocalization energy nega-
tive?”591 and reported that every one of the maximally
localized π orbitals is still more delocalized than the
ethylene π-orbital. Paniagua and Moyano have ob-
served592 for benzenoid conjugated hydrocarbons that
the localized molecular orbitals of Edminston and
Ruedenberg593,594 can always be associated with the
Fries Kekulé structure of the maximal Kekulé index
value. The Kekulé index was introduced by Graovac
et al.595 as a measure of the overlap of a set of CC
double bonds within a Kekulé valence structure with
each of the occupied MO’s. One may interpret the
Kekulé index to indicate the importance of a Kekulé
valence structure: the larger the index, the more
important is the contribution of that particular
structure in the total wave function. Such an inter-
pretation is supported by the result that the valence
structures with the largest number of benzene Kekulé
structures are those with the greatest Kekulé index,
in complete agreement with the empirical Fries
rule.5,6 Finally, we may add that Hosoya and collabora-
tors596-598 produced visual density maps which depict
local features in benzenoid hydrocarbons. They con-
sidered the concept of partial electron density and
drew contour maps slightly above the molecular
plane. For a number of benzenoids, such maps show
the characteristic features that parallel densities
expected from Clar structures of these benzenoids.

XVII. Aromaticity versus Anti-aromaticity

Kekulé structures are of paramount importance
for the stability of aromatic ring systems.

E. Clar, W. Kemp, and D. G. Stewart599

We start with the fact that we all agree that
benzenoid hydrocarbons s that is, polycyclic conju-
gated hydrocarbons built from fused benzene rings s
are aromatic. Some may be “more” aromatic than
others, but they are all aromatic. Difficulties arise
when we want to attribute “aromatic character” to
the compounds that are built not from benzene rings
but from rings of different sizes. Some of these non-
benzenoid hydrocarbons show considerable similarity
in various properties to benzene itself, and they
themselves rarely cause problems. Non-benzenoid

hydrocarbons that do not show any similarity what-
soever in their properties to benzene again do not
cause much problems. The difficulties are with
compounds that are, so to speak, the “border” case.
They show some similarity to benzenoid hydrocar-
bons, but at the same time they display marked
dissimilarities. Are they to be considered aromatic
or not, or could we assign to them a partial aroma-
ticity character?

Before trying to clarify these difficulties, we have
to agree on the terminology to be used. We will first
define benzenoid hydrocarbons as used in this review
as follows:

Definition: A benzenoid hydrocarbon is a conju-
gated polycyclic system having Kekulé valence struc-
tures built solely from fused benzene rings in such a
way that no larger rings are formed.

According to this definition, helicenes classify as
benzenoids, even though larger helicenes are highly
non-planar, with several rings overlapping other
rings. As has been pointed out by Herndon,600 al-
though we may draw benzenoid hydrocarbons as
fragments of a graphite lattice, many benzenoids are
not planar because of hydrogen-hydrogen repulsion.
This is particularly the case with benzenoids having
the so-called “cove” or “fjord” regions on their perim-
eters. The descriptive terms “cove” and “fjord” were
introduced by Gutman and Cyvin452 to signify local
concave regions on the periphery of benzenoids
involving four and five CC bonds, respectively. While
“cove” and “fjord” may be adequate descriptive labels,
they have been overshadowed by the local regions
known as the “bay”. This term describes a concave
fragment of the periphery of benzenoids involving
three CC bonds close to the terminal benzene ring,
which became prominent with their recognition by
Jerina and co-workers419-421 as the location of im-
portance for carcinogenicity of benzenoid hydrocar-
bons.

We should mention that there are other definitions
of benzenoid hydrocarbons. For instance, Gutman
and Cyvin452 excluded as “benzenoid” compounds that
cannot be superimposed on a graphite lattice without
overlapping (like larger helicenes). In addition, Gut-
man classified as “benzenoid” structures that repre-
sent fragments of a graphite lattice, even if they have
no Kekulé valence structures. This is the case with
the structures shown in Figures 75 and 76. Such
structures have been referred to as “non-Kekuléan”.
The definition of benzenoids proposed by Gutman
and Cyvin may be more suitable for mathematical
than for chemical analysis. Our definition of ben-
zenoid hydrocarbons excludes structures shown in
Figures 75 and 76, because they do not have Kekulé
valence formulas. In fact, such structures do not exist
as chemical compounds. In his booklet The Aromatic
Sextet, Clar49 considered several hypothetical struc-
tures shown in Figure 75 and concluded that they
cannot be prepared. It is not difficult to recognize that
structures shown in Figure 75 cannot have Kekulé
valence structures, because they have unequal num-
bers of “starred” and “non-starred” carbon atoms.
Kekulé structures require an equal number of
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“starred” and “non-starred” carbon atoms because
each CC double bond combines one “starred” and one
“non-starred” carbons atom. However, it may be more
difficult to recognize the structures shown in Figure
76 as “non-Kekuléan” (that is, as structures with K
) 0). Structures built from fused hexagonal rings
belong to the class of bipartite graphs. In such
systems, carbon atoms can be labeled as “starred”
and “non-starred” so that “starred” atoms are adja-
cent to “non-starred” atoms and vice versa. An equal
number of “starred” and “non-starred” carbon atoms
is a necessary but not sufficient condition for K * 0,
as illustrated by 6/75 and 7/75, the last two struc-
tures shown in Figure 75, and all the non-Kekuléan
structures shown in Figure 76. The structures having
an equal number of “starred” and “non-starred”
carbon atoms and not having a Kekulé valence
structure have became known as “concealed” struc-
tures, in view of the fact that in some cases it is more
difficult to recognize such structures as having K )
0. The search for “concealed” structures received
some attention in the literature.601-606 Because such
structures do not exist it may appear that they would
be of limited interest in chemistry. However, some
of the structures shown in Figures 75 and 76 repre-
sent carbon skeletons of stable dianions and di-
cations. Murata and co-workers607,608 synthesized
both the dianion and the dication of triangulene (1/
75) and dibenzopentacene (3/75).

Clar and co-workers609,610 tried to synthesize a few
of the “elusive” compounds, triangulene (1/75), C22H12,
and dibenzo[de,jk]pentacene (2/75), C24H14, but with-
out success. Clar came to the conclusion that com-
pounds that have no Kekulé valence structure do not

exist. One can refer to this conclusion of Clar as the
“Clar postulate”:

Clar Postulate: Structures built from fused benzene
rings for which one cannot draw a Kekulé valence
structure do not exist.

The significance of this postulate can be put in full
parallel with the significance of the Hückel 4n + 2
rule. The Hückel 4n + 2 rule explained the difference
between 4n + 2 and 4n monocyclic conjugated sys-
tems, which was the first triumph of MO theory as
applied to organic chemistry. The Clar postulate,
which predicts the very existence of structures built
from fused benzene rings, can be viewed as the first
triumph of chemical graph theory applied to poly-
cyclic conjugated systems! The Clar postulate can be
extended to apply also for non-benzenoid hydrocar-
bons.

The structures shown in Figure 63, which include
kekulene as the last structure, which was prepared
in 1978 by Staab, Diderich, and co-workers,611-614

have been excluded from both alternative definitions
of benzenoids, although they are expected to show
considerable similarities in their properties to ben-
zenoid hydrocarbons. The reason for their exclusion
from the class of benzenoids is that, although they
can be viewed as derived by fusion of benzene rings,
they also incorporate a larger (central) ring that does
not represent benzene. Hence, such structures should
not be taken as a standard for characterization of
benzenoid hydrocarbons. Because of their consider-
able similarity to benzenoids, one may refer to these
as pseudo-benzenoids. Such compounds have been of
considerable theoretical interest,615 particularly in
view of the intriguing notion of “super-aromaticity” 616

that we will address later.

XVIII. On Classification of Polycyclic Conjugated
Hydrocarbons

All the real knowledge which we posses, depends
on methods by which we distinguish the similar
from the dissimilar.

Carolus Linnaeus617

With so many compounds, it is only to be expected
that one would like to classify them into groups,
groups into subgroups, and subgroups into still
smaller classes, if necessary. Several criteria for
classifications of compounds continue to be consid-
ered in chemistry, such as cyclic T acyclic, organic
T inorganic, hydrocarbons T heteroatomic systems,

Figure 75. Benzenoid-like structures that represent frag-
ments of a graphite lattice but have no Kekulé valence
structures.

Figure 76. So-called “concealed” benzenoid-like structures (having an equal number of “starred” and “non-starred” carbons)
that have no Kekulé valence structures.601-606
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benzenoid T non-benzenoid, alternant T non-alter-
nant, aliphatic T aromatic, saturated T unsaturated,
carcinogenic T non-carcinogenic, toxic T non-toxic,
etc. Each such classification has focused attention on
a particular aspect of interest for the classification.
Here we are interested in classification of compounds
that will reflect their aromatic and/or anti-aromatic
nature. Again, we will confine our attention to
conjugated hydrocarbons and will not consider their
ions or radicals. If we are going to extend the
classification aromatic T non-aromatic T anti-
aromatic to their ions or radicals, and then incorpo-
rate even heteroatomic counterparts, we must first
wait for the proposed classification of polycyclic
conjugated hydrocarbons to be accepted, ameliorated,
or abandoned.

We propose to establish four classes of polycyclic
conjugated hydrocarbons, as listed below:

One may refer to the borderline cases between
aromatic and anti-aromatic hydrocarbons as A/A
(non-aromatic hydrocarbons).

Before each of the classes is fully described, let us
explain why we have four classes and not two classes
(aromatic and anti-aromatic), or why three classes
(aromatic, non-aromatic, and anti-aromatic) will not
suffice. There are no problems with the dichotomy
“aromatic-anti-aromatic” based on the presence of
only 4n + 2 or only 4n conjugated circuits in the set
of Kekulé valence structures of a compound, respec-
tively. The problem is with the “non-aromatic” class,
which would include structures having both 4n + 2
and 4n conjugated circuits. Some structures in this
class may show a greater similarity with benzene,
and on the other hand they may show some similarity
to anti-aromatic compounds. The problem is that the
class of such “neither aromatic nor anti-aromatic”
structures, that have both 4n + 2 and 4n conjugated
circuits, is so large and so broad that it becomes of
little use.

With four classes of compounds s fully aromatic,
aromatic, anti-aromatic, and fully anti-aromatic s we
have the possibility to differentiate between the
benzenoid hydrocarbons, which are the prototype of
aromaticity, and compounds that may show proper-
ties similar to those of benzenoid hydrocarbons but
may have some structural features that are not
typical of “pure” aromatic compounds (such as the
presence of a few 4n conjugated circuits that may
contribute slight anti-aromaticity characteristics).
Consider, for example, biphenylene, which one would
tend to classify as aromatic, yet the compound has a
four-member ring that one tends to associates with
anti-aromaticity. By introducing four classes of com-
pounds, we can resolve the difficulty arising from
compounds that show aromatic properties but are not
a 100% aromatic. By separating aromatic compounds
into two classes s “pure” or “fully” aromatic and
“aromatic” (implying some “impurities”) s we can
classify biphenylene as “aromatic”, while benzenoids

like naphthalene, anthracene, phenanthrene, etc. are
considered “pure” aromatic compounds. The distinc-
tion between “fully aromatic” and “aromatic” alerts
chemists to the presence of “less than aromatic”
features in some aromatic compounds classified in
this way. In particular, this allows one to differenti-
ate compounds that should be viewed as the stan-
dards of aromaticity from aromatic compounds, the
aromatic properties of which could have been com-
promised by the presence of a few 4n conjugated
circuits.

The critical structural elements on which we base
our classification are conjugated circuits that are
“hidden” in the set of Kekulé valence structures of a
molecule. We may have molecules that have only
4n + 2 type conjugated circuits, molecules that have
only 4n type conjugated circuits, or molecules that
have both types of conjugated circuits. If both types
of conjugated circuits are present in a molecule, we
can distinguish cases when there are more 4n + 2
type conjugated circuits than 4n type, and vice versa.
Finally, we may have cases where the two types of
conjugated circuits appear to be present in a similar
quantity, which leads to ambiguous borderline cases
of compounds that have aromatic/anti-aromatic char-
acter. Such compounds may, at the same time, be
weakly aromatic or weakly anti-aromatic. Although
one may refer to such compounds as non-aromatic,
there is no need to form a special class of aromatic/
anti-aromatic compounds by itself. Such compounds
may be grouped when needed and referred to as the
borderline cases of aromatic/anti-aromatic without
formally setting them apart. Hence, in summary, we
propose the following classes of hydrocarbons, identi-
fied by differences in their conjugated circuits con-
tent:

One may informally refer to the borderline cases
(when the number of 4n + 2 conjugated circuits
equals the number of 4n conjugated circuits) as non-
aromatic hydrocarbons, but it appears better to call
them by their proper name: “borderline case of
aromatic/anti-aromatic class”. This would allow us
to reserve the label “non-aromatic” compounds for
compounds in which there is no resonance, in which
all CC bonds have a fixed CC double or CC single
bond type. An example of non-aromatic compounds
would be, besides the tub form of cyclooctatetraene,
molecules like fulvene (1/77), heptafulvene (2/77),
fulvalene (3/77), sesquifulvene (4/77), and heptaful-
vene (5/77), shown in Figure 77. In such molecules,
there are no conjugated circuits. Instead, one can
consider conjugated paths (conjugated chains), which
may allow one to better characterize subtle differ-
ences in the kind of conjugation components present
in the compounds illustrated in Figure 77. In Table
32 we give the count of conjugated paths of different
length for the acyclic non-aromatic compounds shown
in Figure 78. As we can see, the count of conjugated
paths varies among isomers. However, as illustrated

fully aromatic (“aromatic-aromatic”) AA or AA
aromatic A A
anti-aromatic Ah 1/A
fully anti-aromatic (“anti-anti-aromatic”) Ah Ah 1/AA

fully aromatic only 4n + 2 conjugated circuits
aromatic (4n + 2) > 4n
anti-aromatic 4n > (4n + 2)
fully anti-aromatic only 4n conjugated circuits
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by compounds 10/78 and 11/78, there are compounds
of different connectivity that are built having the
same count of conjugated paths. This should not be
surprising, because the same situation occurs with
the count of paths in saturated alkanes.322,323 On the
other hand, the last four structures, 12/78-15/78,
isomers of C12H11, which have neither been discrimi-
nated by the cluster expansion method of Hess and
Schaad,618 nor by the method of Jiang, Tang, and
Hoffmann,559 as pointed out by Schmalz et al.,619 are
found to have different counts of conjugated paths.
The method of Hess and Schaad discriminates three

types of CC single bonds and five types of CC double
bonds that can arise in unsaturated hydrocarbons in
which carbon atoms may have as neighbors two, one,
or no hydrogens. Jiang, Tang, and Hoffmann simi-
larly consider five types of CC bonds, which can be
single or double, which again differentiate only the
immediate bond environment. Isomers necessarily
have the same count of conjugated paths of length
one and two, so to differentiate among them one has
to increase the diameter of the neighborhood. As we
can see from Table 32, there are many isomers that
have the same count, even for paths of length three.
As pointed out by Schmalz, Živković, and Klein, “a
framework for understanding these decompositions is
provided by the concept of graph-theoretic cluster
expansion.” 619 A property of a molecule is written as
a sum of contributions from progressively larger
connected subgraphs of the molecular graph, but to
be useful the expansion must converge relatively
rapidly.620-624 The critical step in such expansions is
the selection of the class of subgraphs. For example,
Moyano and Paniagua625 considered a selection of the
next-nearest-neighbor bond interactions, which ap-
parently correspond to an increase (even if not
systematic) of the diameter of the cluster expansion.
As pointed out in ref 619, inclusion of all next-
nearest-neighbor bond interactions would result in
a large number of parameters that would need to be
fitted to experimental data s so the “art” of the game
is to recognize the smallest number of the expansion
subgraphs that account for the most of variations in
the properties. The conjugated paths may be of
interest in some such expansions.

When considering expansions, some caution has to
be exercised in allowing for a possibility that an
apparently different form of an expansion may turn
out to be mathematically equivalent. This has al-
ready been seen with Herndon’s resonance theory
and the conjugated circuits method, which can both
lead to the same expressions for the molecular
resonance energy. The distinction between such
expansions may be in the interpretation of the terms
used. This is well illustrated with a comparison of
the quantum chemically computed diamagnetic sus-
ceptibilities of alkanes and the graph theoretical
analysis of the same diamagnetic susceptibilities
briefly outlined below.

Analysis of Diamagnetic Susceptibility of Al-
kanes. Hameka was626 the first to develop a general
theory of diamagnetic susceptibilities of saturated
organic molecules. He used the MO formalism based
on the following assumptions: (1) all CC and CH
bonds are localized; (2) all CC bonds are identical and
all CH bonds are identical; and (3) all CC and all CH
bond lengths are constant for all alkane molecules.

Using the above assumptions, Hameka has shown
that the diamagnetic susceptibility can be expressed
by

Here, NC is the number of carbon atoms, NCC the
number of CC bonds, NCH the number of CH bonds,

Figure 77. Cyclic benzenoid hydrocarbons with a single
Kekulé valence structure.

Table 32. The Count of Conjugated Paths for the
Acyclic Systems Shown in Figure 78

molecule path 1 path 2 path 3 path 4 path 5

1/78 4 3 2 1
2/78 4 3 2
3/78 4 3 1
4/78 4 3
5/78 5 4 3 2 1
6/78 5 4 3 2
7/78 5 4 3 1
8/78 5 4 2 1
9/78 5 4 4
10/78 5 4 1
11/78 5 4 1
12/78 6 5 2 1
13/78 6 5 2 1
14/78 6 5 3 1
15/78 6 5 3 2

Figure 78. Acyclic conjugated hydrocarbons for which the
count of conjugated paths is listed in Table 31.

ø ) NCøC + NCCøCC + NCHøCH - NCC,CCøCC,CC -
NCC,CHøCC,CH - NCH,CHøCH,CH
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NCC,CC the number of adjacent CC bonds, NCC,CH the
number of adjacent pairs of CC and CH bonds, and
NCH,CH the number of adjacent pairs of CH bonds. The
quantities øC, øCC, øCH, øCC,CC, øCC,CH, and øCH,CH are
formally defined through the corresponding quantum
chemical integrals, which in semi-empirical ap-
proaches can be viewed as adjustable parameters.

The above theory of diamagnetic susceptibilities of
alkanes is fully cast in the language of quantum
chemistry. However, the assumptions of the model
allow one to interpret the same results in the
language of graph theory. Let us focus only on CC
bonds, because CH bonds can be inferred from the
connectivity of CC bonds. The assumptions that “all
CC bonds are localized”, that “all CC bonds are
identical”, and that “all CC bond lengths are constant
for all alkane molecules” mean that small variations
among CC bonds have been ignored in the calcula-
tions. But the same is true of molecular graphs, for
which only connectivity matters and not the lengths
of individual bonds. As we can see from the formula
for ø, the count of bonds and the count of pairs of
adjacent bonds are all that matter. In graph theoreti-
cal language, one speaks of paths of length one
(bonds) and paths of length two (pairs of adjacent
bonds). Hence, the result for the diamagnetic sus-
ceptibility can be equally well cast in graph theoreti-
cal format.

If we use the parameters A, B, and C of Hameka,
defined as follows,

and use letters a, b, and c for the graphs representing
carbon skeletons of methane, ethane, and propane,
that is, paths of length zero, one, and two, respec-
tively, we find that the two sets of descriptors are
simply related:627

We see that by using the graph theoretical model,
we can immediately understand, for example, why
2-methylpentane and 3-methylpentane have the same
diamagnetic susceptibility, given by A + 5B + C,
which is not apparent from the standard quantum
chemical approach. For an extension of this approach
to heteroatomic compounds, see ref 628.

XIX. Fully Aromatic Hydrocarbons
“Aromaticity,” if to be used at all, should be a
purely structural concept ...

E. Heilbronner 629

Benzene and all benzenoid hydrocarbons have only
4n + 2 conjugated circuits. Hence, these compounds
should be viewed as prototypes of aromatic com-
pounds. We have already shown in Tables 15-23 the
RE values for the smaller benzenoid hydrocarbons
illustrated in Figures 53-63, assuming in most cases
and if not shown otherwise that R1 ) 0.869 eV, R2 )
0.247 eV, and R3 ) 0.1008 eV. As already mentioned,

when comparing molecules of different size, because
RE increases with molecular size, better indices of
relative aromaticity are RE/ring and REPE (the
resonance energy per electron), the measure intro-
duced by Hess and Schaad.564 As we have seen from
Tables 15-25, the values of REPE may vary ap-
preciably. Benzenoid hydrocarbons with several lin-
early fused rings show reduced values of REPE in
comparison with benzenoids having several “kink”
rings. Among the compounds considered, the largest
REPE, bigger even than the value for benzene,
belongs to triphenylene and other fully benzenoid
hydrocarbons considered. Clar was the first to advo-
cate the concept of fully benzenoid hydrocarbons,
which are benzenoid hydrocarbons of unusual stabil-
ity.49

Definition: Fully benzenoid hydrocarbons are 6n
π-electron systems, which have the maximal number
of disjoint benzene rings to which is assigned isolated
π-sextets, mutually connected by CC single bonds only.

There are benzenoid and non-benzenoid hydrocar-
bons that have identical decomposition of their
Kekulé valence structures in conjugated circuits. One
refers to such structures as isoconjugate.53 In Figure
79 (top) we show dibenzo[a,h]anthracene and diben-
zo[a,j]anthracene, a pair of benzenoid hydrocarbons
that are isoconjugate. Such structures can be easily
constructed from smaller benzenoids by attaching a
benzene ring to symmetry-non-equivalent CC bonds
that have the same Pauling bond order. For example,
chrysene and benzophenanthrene, the smallest iso-
conjugate benzenoid hydrocarbons, can be con-
structed in this way from phenanthrene. In the
middle part of Figure 79 is shown a pair of isocon-
jugate derivatives of biphenylene, while at the bottom
is shown a pair of isoconjugate non-benzenoids built
from azulene fragments. We included in Figure 79
two cyclic azulenoid structures; the structure on the

A ) øC + 4øCH - 2øCC,CH - 5øCH,CH

B ) øC + øCC + 2øCH - øCC,CC - 4øCC,CH - øCH,CH

C ) -øCC,CC + 2øCC,CH - øCH,CH

A ) a - c, B ) a + b + c, and C ) c

Figure 79. Isoconjugate structures. Top, benzenoids;
middle, alternant non-benzenoids; and bottom, non-alter-
nant non-benzenoid structures.
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left has been mentioned in the literature,630 but the
structure on the right apparently has been over-
looked, and this may be the first time that it appears
in the chemical literature. Both structures, which are
isoconjugate, of course, would present an interesting
challenge to synthetic chemists.

It may be of interest that isoconjugate benzenoid
hydrocarbons necessarily have the same RE in Hern-
don’s resonance theory VB model as in the conjugated
circuits model, but generally they will have different
RE in the HMO model and the TRE model, men-
tioned earlier. This clearly points to not only numer-
ical but also conceptual differences between different
graph theoretical models: those based on the adja-
cency matrix (HMO) and that based on Kekulé
valence structures and conjugated circuits (VB).

That benzenoid hydrocarbons are generally viewed
as aromatic is well known, but it is less known that
there are a number of non-benzenoid hydrocarbons
that also have only 4n + 2 conjugated circuits. A good
example is acepleiadylene, C16H10, which has four
Kekulé valence structures, illustrated in Figure 80.
As we can see from Figure 80, each of the four
individual Kekulé structures yields only 4n + 2 con-
jugated circuits, which gives the following for the
average conjugated circuits content of acepleia-
dylene: (4R1 + 2R2 + 6R3)/4. This gives for molecular
RE and REPE the values 1.143 and 0.071 eV,
respectively. While the derived RE is somewhat
smaller than that of naphthalene, the REPE is
considerably smaller than the values found in ben-
zenoid hydrocarbons having the same number of
carbon atoms. In fact, we should compare the RE of
acepleiadylene with that of pyrene, which has the
same empirical formula C16H10: for pyrene, RE )
2.133 eV and REPE ) 0.133, almost twice the values
of acepleiadylene. Despite the reduced RE, aceple-

iadylene is as “blue blood” an aromatic compound as
naphthalene and pyrene, because it has only 4n + 2
conjugated circuits.

An interesting pair of non-benzenoid structures
built from only five- and seven-member rings and
having only 4n + 2 conjugated circuits, and thus
being prototypes of aromatic compounds, is illus-
trated at the bottom of Figure 79. They have only 36
Kekulé structures and are isoconjugate; that is, there
is a one-to-one correspondence between their Kekulé
structures and their conjugated circuits. Their ex-
pression for RE is (120R2 + 72R4 + 24R6)/36; hence,
essentially only the conjugated circuits within azu-
lene units make significant contributions to molec-
ular RE. A comparison with azulene shows that the
REPE of the two cyclic azulenoids is about a half the
REPE of azulene. This suggests that the synthesis
of cyclic “azulenoids” is possible. In Figure 81 we
show two Kekulé structures of the cyclic azulenoid,
one of which has the maximal number (three) of
disjoint conjugated circuits, and the other has the
smallest number (two) of disjoint conjugated circuits.
Both structures, as one can verify by trial and error,
have df ) 3, which indicates that in the case of non-
benzenoid systems the number of disjoint conjugated
circuits and the degree of freedom of a Kekulé
structure need not be the same.

Non-benzenoid hydrocarbons having only 4n + 2
conjugated circuits and built from five- and seven-
member rings are illustrated in Figure 67. The
structures 2/67 and 3/67, then 5/67 and 6/67, and
again 4/67, 7/67, and 11/67 are isoconjugate. In Table
26 we listed the RE values of a number of fully
aromatic non-benzenoid molecules (shown in Figure
67). Not surprisingly, these compounds also show
large variations in REPE that are particularly visible
in the case of compounds 4/67, 7/67, and 11/67, which
lack the contribution not only from R1 conjugated
circuits but also from R2 conjugated circuits. Isocon-
jugate benzazulenes 2/67 and 3/67 represent bridged
14-annulenes having three Kekulé structures, and
structures 4/67, 7/67, and 11/67 represent bridged
14-annulenes having only two Kekulé structures,
while the bridge in structure 11/67 involves es-
sentially single and essentially double CC bonds.

In summary, we see a clear-cut reduction in REPE
for the fully aromatic molecules shown in Figure 67
with five- and seven-member rings in comparison
with molecules built solely by fusion of benzene rings.
Another significant reduction in REPE accompanies
molecules having no fused benzene rings at all

Figure 80. Kekulé valence structures for acepleiadylene,
C16H10, and their decomposition in conjugated circuits.

Figure 81. Two Kekulé structures of the cyclic azulenoid
system shown in Figure 79, having df ) 3 and having
different numbers of disjoint conjugated circuits.
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(compounds 1-7 in Figure 67), which thus lack R1
contributing conjugated circuits.

XX. Less than Fully Aromatic Hydrocarbons
Numerous compounds are generally viewed as

aromatic although they contain, besides 4n + 2 con-
jugated circuits, also a few 4n conjugated circuits. We
have already mentioned aceheptylene and coranu-
lenes with 4n periphery. If we are to restrict the label
“aromatic” solely to compounds having only 4n + 2
conjugated circuits, then on one hand there would
be too few compounds besides benzenoid hydrocar-
bons that would qualify as aromatic, and on the other
hand compounds that have many properties typical
of aromatic compounds would not qualify. For ex-
ample, compounds like biphenylene, generally con-
sidered aromatic, would then not qualify as aromatic.
Therefore, we ought to broaden the definition of
aromatic compounds so as to embrace compounds
which have dominant contributions from 4n + 2
conjugated circuits. However, in this way, in order
to solve one “problem”, that of widening the meaning
of aromaticity, we have created a novel “problem”,
the problem of how to determine what constitutes the
“dominant” aromatic features. More specifically: How
many 4n + 2 conjugated circuits in a molecule should
be present to overshadow the adverse influence of 4n
conjugated circuits?

In order to resolve this dilemma, we will examine
structures having both 4n + 2 and 4n conjugated
circuits that are generally perceived as “aromatic”,
that is, in which 4n + 2 conjugated circuits are
presumed to play the dominant role. In Figure 64 we
illustrated macrocyclic compounds obtained from
fused benzene rings but allowing “holes” which
involve larger 4n cycles. It seems plausible to expect
here a dominant role of 4n + 2 conjugated circuits.
The smallest 4n conjugated circuits possible in such
macrocyclic structures has 12 carbons atoms (desig-
nated as Q3) which, at best, can make a small
negative contribution to molecular RE. Recall also

that aceheptylene, perceived by Coulson and others
to be aromatic, has Q3 conjugated circuits. Thus, it
appears that conjugated circuits having 12 π-elec-
trons already make weak “anti-aromatic” contribu-
tions to “threaten” the dominant features of 4n + 2
conjugated circuits (here, R2 conjugated circuits).

In Figure 82 we show pyrene and several non-
benzenoid pyrene-like tetracycles, which Aihara631

studied using the HMO approach. We have ordered
these isomers of pyrene relative to their resonance
energies. In Table 33 we have listed the expressions
for the RE for these molecules in terms of conjugated
circuits and computed RE using the following pa-
rametrization for conjugated circuits contributions:

The above parametrization for 4n + 2 conjugated
circuits is based on the standard least-squares analy-
sis632 of 32 benzenoids for which Dewar and de Llano
reported SCF MO resonance energies. The contribu-
tions of 4n conjugated circuits were based on the SCF
MO computed resonance energy of cyclobutadiene,
reported by Dewar and de Llano. The numerical
values of the Q2 and Q3 parameters were obtained
by assuming for Qn contributions the same propor-
tionality that holds for Rn contributions, i.e., the
following approximations:633

We have to point out that future quantum chemical
calculations of RE for these compounds may require
a revision of the values assumed here for Rn and Qn
contributions.

Observe from Table 33 that pyrene, the only
benzenoid compound among those considered, has RE
considerably larger than the remaining compounds
of Table 33. The next in magnitude of RE are the
three “fully aromatic” compounds of Table 33: 2/82,

Figure 82. Non-benzenoid pyrene-like tetracycles studied by Aihara.631 (RE values are shown in Table 33.)

Table 33. Expressions for Molecular RE, the Graph Theoretically Computed RE, and the Hu1 ckel Molecular
Orbital (HMO) RE for Pyrene and Several Structurally Related Polycyclic Compounds (Shown in Figure 82)

molecule descriptiona RE expression RE HMO RE

1/82 AA (12R1 + 8R2 + 4R3)/6 2.151 0.598
2/82 AA (4R1 + 4R2 + 4R3)/4 1.255 0.376
3/82 AA (4R1 + 4R2 + 4R3)/4 1.255 0.372
4/82 AA (4R1 + 2R2 + 6R3)/4 1.152 0.398
5/82 A (8R2 + 2R3 + 2Q3)/4 0.645 0.217
6/82 A (8R2 + 2R3 + 2Q2)/4 0.579 0.214
7/82 A (6R2 + 2R3 + 2Q2 + 2Q 3)/4 0.375 0.122
8/82 AA 2R3/2 0.111 0.247

a AA ) aromatic-aromatic (fully aromatic); only 4n + 2 conjugated circuits. A ) aromatic; 4n + 2 > 4n conjugated circuits.

R1 ) +0.827 eV R2 ) +0.317 eV R3 ) +0.111 eV

Q1 ) -0.781 eV Q2 ) -0.222 eV Q3 ) -0.090 eV

Q2 ) (R2/R1)Q1 Q3 ) (R3/R1) Q1
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3/82, and acepleiadylene 4/82, the RE of which is
about half that of pyrene. The three tetracyclic non-
benzenoid isomers of pyrene undoubtedly owe their
relatively high RE to the presence of the naphthalene
moiety. All three compounds qualify as “fully aro-
matic” (or “aromatic-aromatic”), even though, as we
see from Table 33, their RE values are about half that
of pyrene. The next three compounds shown in Figure
82, 5/82, 6/82, and 7/82, again show a dramatic
reduction in RE in comparison with the three “fully
aromatic” isomers of pyrene. The RE is now reduced
by a factor of 2 compared to that of “fully aromatic”
non-benzenoids. These three compounds have 4n
conjugated circuits, but as we can see from the
expression for RE, the reduction of RE is not so much
due to the presence of 4n conjugated circuits as it is
due to the lack of the contributions from R1. Finally,
the last structure of Table 33 not only lacks contribu-
tions from R1 but also has no contributions from R2
conjugated circuits, and although the structure quali-
fies as “fully aromatic” (having only 4n + 2 conju-
gated circuits), its RE is practically negligible. For
comparison, in the last column of Table 33 are listed
HMO resonance energies for pyrene and its isomers
as reported by Aihara,631 which show a fair parallel-
ism between the corresponding RE, except for the last
two compounds.

There are two important messages from the com-
parison of the compounds listed in Table 33, First,
RE alone does not offer a reliable criterion for
classification of conjugated polycyclic compounds as
aromatic, non-aromatic, or anti-aromatic. Second, the
HMO computed RE values do not offer a reliable
criterion for classification of polycyclic compounds as
aromatic, non-aromatic, or anti-aromatic. The HMO
computed RE for the last compound of Table 33 is
apparently too high. Also, the relative values of RE
as derived from the GT (graph theory) approach and
the HMO method show minor discrepancies. Accord-
ing to the HMO method, the RE of isomer 4/82 is
overestimated. A close examination of RE obtained
by the HMO and the SCF MO approaches neverthe-
less may be instructive, particularly within families
of structurally related compounds. It may give some
insight into topological factors that are and that are
not critical for molecular stability.

A. Degree of Aromaticity

(Cycloocta[1,2,3,4-def]benzo[3,4]cyclobuta[6,7]-
biphenylene) appears to hover at the border line
between olefinic, aromatic, and antiaromatic
classification.

C. F. Wilcox, Jr., and G. D. Grantham634

Cycloocta[1,2,3,4-def]benzo[3,4]cyclobuta[6,7]bi-
phenylene (shortly cycloocta[def]biphehylene), the
first structure shown in Figure 83, built by fusing
biphenylene and cyclooctatetraene, is one of several
hydrocarbons involving unusual conjugations that
were synthesized by Wilcox and collaborators in the
period 1972-1976.634-637 Cycloocta[def]biphenylene
has an equal number of 4n + 2 rings and 4n rings.
Is it aromatic, olefinic, or anti-aromatic? Apparently,
such molecules are less aromatic than biphenylene,

which itself is less aromatic than any of the ben-
zenoid hydrocarbons. It is then conceivable that the
molecules shown in Figure 83 may have crossed “over
the borderline between olefinic, aromatic, and anti-
aromatic classification”.

In order to set a boundary between aromatic, non-
aromatic, and anti-aromatic compounds, first we
have to define a measure of the “degree of aromatic-
ity” and then apply it to a series of structurally
related compounds of apparently decreasing aromatic
character in order to verify its adequacy. If we
continue to consider RE as the prime indicator of
aromatic characteristics of compounds, then we can
define the “degree of aromaticity” to measure that
portion of the total RE which is due to contributions
from the aromatic 4n + 2 conjugated circuits. This
leads to the following:

Definition: The degree of aromaticity A is given by
the quotient

where RE(4n + 2) are (positive) contributions of Rn
conjugated circuits and RE(4n) are (negative) contri-
butions of Qn conjugated circuits.

This can be written as A ) 1 - Q, where Q is the
quotient of the absolute values of the negative and
the positive contributions to RE. Hence, the degree
of aromaticity is given by the fraction of RE derived
from contributing 4n + 2 conjugated circuits. Alter-
native definitions are possible. For example, one such
“aromaticity scale” was defined as follows:638

Definition: The degree of aromaticity is given by the
quotient

where RE(4n + 2) are (positive) contributions of Rn
conjugated circuits and RE(4n) are (negative) contri-
butions of Qn conjugated circuits.

Recollect that RE(4n) is a negative quantity, so in
both definitions the numerical values of the aroma-
ticity index are less than one for compounds having
4n conjugated circuits. The two measures parallel
each other to a degree.

We are now in a position to establish numerically
the boundary between the aromatic and anti-aro-
matic compounds. A non-benzenoid hydrocarbon will
qualify as aromatic or not, depending on whether, in
such non-benzenoid hydrocarbons, there is a domi-

Figure 83. Cycloocta[1,2,3,4-def]benzo[3,4]cyclobuta[6,7]-
biphenylene and related compounds described by
Wilcox.634-637

A ) [RE(4n + 2) + RE(4n)]/[RE(4n + 2)]
) 1 + RE(4n)/RE(4n + 2)

A′ ) [RE(4n + 2) + RE(4n)]/
[RE(4n + 2) - RE(4n)]
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nant role of 4n + 2 or 4n conjugated circuits. In
Figure 68 we collected a number of conjugated
hydrocarbons having one or more odd-member rings.
The structures considered included aceheptylene (1/
68), azupyrene (2/68), dicycloheptapentalene (4/68),
azulenoheptalene (5/68), pyracylene (7/68), and two
isomers of dibenzpentalene (8/68 and 9/68). In Table
27 we listed their RE and A (%) values. As we can
see from Table 27, the non-benzenoid non-alternant
compounds in Figure 68 show a considerable varia-
tion in their RE values, which are as high as 1.323
eV and as low as 0.275 eV. The variation in the REPE
for the same compounds also shows a considerable
range: the highest value is 0.075 eV for 9/68, and
the smallest is 0.021 eV for pyracylene. However, the
changes in their relative aromaticity is moderate: it
decreases from the value found for an “almost” fully
aromatic compound 10/68 to the dibenzpentalene
3/68, which has an A index of about 62%. It is clear
from Table 27 that the dominant role for all com-
pounds shown in Figure 68 is played by the 4n + 2
conjugated circuits.

B. On the Boundary of Aromaticity

At the very beginning of this review, in Figure 2,
we illustrated a sequence of structurally related
compounds starting with aromatic benzene and end-
ing with hypothetical anti-aromatic (planar) cyclo-
octatetraene. A gradual variation of the relative
content of 4n + 2 and 4n conjugated circuits is
expected as we move from the top to the bottom, from
benzene to the planar hypothetical cyclooctatetrane.
In Table 34 we show the aromaticity and anti-
aromaticity indices for the compounds in Figure 2.

Finally, in the last two columns of Table 34, we
computed a “non-dimensional” RE by assuming

We have adjusted the scale so that it reproduces the
RE of benzene, which facilitates comparisons with RE
as calculated in the first numerical column of Table
34. An advantage of the dimensionless scale is that,
though it is approximate, it is independent of fluc-
tuations of the parameters R1, R2, R3, and Q1, Q2, Q3
when such would be based on quantum chemical

computations from different sources and employing
different approximations. As we can see, the two
scales agree to a considerable degree. An additional
advantage of the non-dimensional scale is that it
allows one to include contributions of conjugated
circuits R4, R5, R6, etc., which were mostly neglected.
We assume that they would make contributions of
1/33, 1/34, 1/35, etc. Although these contributions are
small in larger molecules, there are many of these
conjugated circuits, so that they may not be negli-
gible. Such would be the case of the giant benzenoids
described by Müllen et al.174-177 and the fullerenes
described by Kroto et al.153

Even if such contributions cannot be established
with sufficient confidence at this time, they have a
conceptual value. Consider, for instance, the last
compound of Table 27, for which we found the
numerical aromaticity index A to suggest 100%
aromaticity. However, we know that this is not a
“full-blooded” aromatic compound, because the mol-
ecule has conjugated circuits Q4 and Q5, the contribu-
tions of which we have neglected. If we take into
account the presence of these 4n conjugated circuits
and use the extended “non-dimensional” scale, we
find that the aromaticity index decreases to about
96% and is not 100%.

The “official” boundary between aromatic/anti-
aromatic classification is a matter of convention,
agreed upon between the users. One possibility is to
consider A ) 1/2 as the boundary of aromatic/anti-
aromatic classification for the following reasons: If
structures with A ) 0 and A < 0 do not exist, because
they would be unstable, while a structure close to A
) 1/2 “appears to hover at the borderline between
olefinic, aromatic, and antiaromatic classification”,634

then the boundary A ) 1/2 appears a plausible
alternative choice. However, from a theoretical point
of view, the case A ) 0, which occurs for RE ) 0,
appears as a natural boundary between the aromatic
and the anti-aromatic species. In the case of the
compounds shown in Figure 2, which gradually
change from aromatic to anti-aromatic, we see from
Table 34 that RE for the compound which is in the
middle of the list, cycloocta[def]biphenylene, is close
to zero, as one would like to be the case. Although
anti-aromatic compounds are elusive and often hy-
pothetical, it may become possible to have a truly
anti-aromatic compound by forcing a non-planar

Table 34. Expressions for Molecular RE, the Graph Theoretically Computed RE, REPE, and the Percentage
Aromatic Character for the Conjugated Hydrocarbons Shown in Figure 2, Which Illustrate a Gradual Transition
from Fully Aromatic Benzene to Fully Anti-aromatic Hypothetical (Planar) Cyclooctatetraene

molecule RE expression RE REPE
arom.

(%)
non-

dimensional
scaled

RE descriptiona

1/2 (2R1)/2 0.827 0.138 100 1.000 0.827 AA
2/2 (4R1 + 2R2)/3 1.314 0.131 100 1.555 1.286 A
3/2 (8R1 + 2Q1 + 4Q2 + Q3)/5 0.815 0.068 61.6 0.911 0.753 A
4/2 (8R1 + 2R3 + 2Q1 + 6Q2 + 5Q3 + Q4)/6 0.582 0.036 51.1 0.605 0.500 A
5/2 (8R1 + 4R2 + 4R3 + 2R4 + 4Q1 + 10Q2 + 8Q3 + 11Q4)/9 0.252 0.013 27.2 0.136 0.112 A
6/2 (2R1 + 2R2 + R4 + 2Q1 + 10Q2 + 4Q3 + 3Q4)/6 -0. 309 -0. 017 -44.8 -0.531 -0.439 1/A
7/2 (4R2 + 2Q1 + 8Q2 + Q4)/5 -0. 414 -0. 026 -62.0 -0.674 -0.557 1/A
8/2 (2R3 + 4Q2)/3 -0. 222 -0. 014 -75.0 -0.370 -0.306 1/A
9/2 (2Q2)/2 -0. 222 -0. 027 -100 -0.333 -0.275 1/AA

a AA ) aromatic-aromatic (fully aromatic). A ) aromatic. 1/A ) anti-aromatic. 1/AA ) anti-anti-aromatic (fully anti-aromatic).

R1 ) -Q1 ) 1, R2 ) -Q2 ) 1/3,
R3 ) -Q3 ) 1/9, R4 ) -Q4 ) 1/27
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octatetraene ring to become planar, as is the case
with tetrakis(bicyclo[2.1.1]hexeno)cyclooctatetraene
reported by Fowler et al.,639 a flattened cyclooctatet-
raene system which has D4h symmetry and shows
paratropic delocalized ring current while maintaining
bond alternation.

C. Degree of Anti-aromaticity
We continue to report on the degree of aromaticity

as given by the index A as previously defined and
the degree of anti-aromaticity 1/A, which can be
defined analogously as follows:

Definition: The degree of anti-aromaticity 1/A is
given by the quotient

where RE(4n) are (negative) contributions of Qn
conjugated circuits and RE(4n + 2) are (positive)
contributions of Rn conjugated circuits.

It follows from the definitions for the “degree of
aromaticity” and the “degree of anti-aromaticity”
that, for A ) 1 or A ) 100% compounds are “fully
aromatic” and that for 1/A ) 1 or 1/A ) 100%
compounds are “fully anti-aromatic”. The quotients
[RE(4n + 2) + RE(4n)]/[RE(4n + 2)] and [RE(4n + 2)
+ RE(4n)]/[RE(4n)] will take values from +1 to -1.
One can combine the “degree of aromaticity” and the
“degree of anti-aromaticity” into a single index A by
assigning positive values for aromatic compounds and
using A ) -1/A, i.e., negative A, for anti-aromatic
compounds.

Although we based our classification of aromatic/
anti-aromatic compounds on RE, other properties of
such compounds may suggest a shift in the apparent
characteristic perceived as making the compound
aromatic. Thus, less aromatic compounds may appear
more aromatic, or vice versa. Consider, for example,
pyracylene or cyclopent[fg]acenaphthylene, prepared
by Trost and co-workers.640,641 This molecule shows
an anomalously low half-wave reduction potential
and has been characterized by Aihara: “this com-
pound is not obviously aromatic”.631 We find that its
aromaticity level based on RE is still quite respect-
able. When we use the three scales mentioned earlier,
pyracylene’s aromaticity index is 86.3%, 72.8%, and
75.0% aromatic, respectively. The count of conjugated
circuits yields for molecular RE (4R1 + 2R2 + 6Q3)/
4, which clearly shows a dominant role of 4n + 2
conjugated circuits. As we can see, while 4n + 2
conjugated circuits make the dominant contribution
to RE, it is possible that, for other properties (such
as the half-wave reduction potential and magnetic
properties), 4n conjugated circuits may play an
important role.

Pyracylene has been the subject of several quan-
tum chemical calculations over a period of two
decades. An early calculation of ring currents and
magnetic properties of pyracylene is that of Coulson
and Mallion642 in the mid-1970s, based on iterative
Hückel molecular orbitals. More recently, Fowler and
co-workers643 reported very advanced ab initio cal-

culations on pyracylene based on the distributed-
origin Hartree-Fock method. The results of such
calculations, which are summarized in the article by
Gomes and Mallion644 in a recent issue of Chemical
Reviews on aromaticity, point to difficulties of theo-
retical computations. The outcomes of such calcula-
tions are often sensitive to the level of sophistication
of the computational method used. Nevertheless, the
overall conclusion of these calculations points to
dominant contributions coming from the “perturbed
[4n]annulene”. This indicates paramagnetic compo-
nents of the ring current as opposed to diamagnetic
components that originate with [4n + 2]annulene
ring currents. In Figure 84 we indicate by arrows the
direction in which CC bonds participating in different
4n + 2 and 4n conjugated circuits in pyracylene
contribute to ring currents. If we assume, for simplic-
ity, that the accompanying ring currents are all of
the same strength, then a simple superposition of all
diagrams indicating ring current direction within
individual conjugated circuits, corresponding to a
superposition of all four Kekulé valence structures
of pyracylene, gives as a result the diagram shown
at the bottom of Figure 84. This simple schematic
representation of the diamagnetic and paramagnetic
ring currents leads to cancellations of ring currents
in the peripheral CC bonds of the naphthalene
moiety. The resulting ring currents qualitatively
agree with more elaborate pictorial representations
of induced current densities in pyracylene, as re-
ported by Fowler and co-workers (and reproduced by
Gomes and Mallion in their review article as Figure
18a). In their concluding remarks, Fowler and co-
workers stated, “Finally, the particular magnetic
properties of pyracylene can be understood qualita-
tively in terms of its ‘anti-aromatic’ electron count of
12 electrons distributed around molecular periph-
ery.” 644 To this we may add that the same conclusion
follows from the qualitative description based on the
conjugated circuits model, with the distinction that
the contributions from the “anti-aromatic” electron

1/A ) [RE(4n) + RE(4n + 2)]/[RE(4n)]
) 1 + RE(4n + 2)/RE(4n)

Figure 84. Schematic representation of diamagnetic and
paramagnetic ring currents originating with 4n + 2 and
4n conjugated circuits in pyracylene, respectively.
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count of 12 electrons comes not solely from the
molecular periphery, but also from contributions of
12 electrons that include interior carbon centers,
which involve a pair of central carbon centers.
Indeed, if only the periphery were responsible for the
density of the paramagnetic ring current, the density
would be over the periphery and not along the
circumference of the two pentagonal faces of pyra-
cylene.

Be that as it may, we should tolerate compounds
such as pyracylene as aromatic but use attributes
such as “partially aromatic” and “not obviously
aromatic” to indicate that their degree of aromaticity
is lower than that of “fully aromatic” compounds.
Whether the term “not obviously aromatic” used by
Aihara is perhaps too strong is a matter of opinion,
but clearly paracylene cannot be labeled as “genu-
inely aromatic”. We see from the case considered that
molecular properties may depend on different struc-
tural features, which again speaks in favor of using
structural criteria to define aromaticity and not a
selection of properties, which will to a different degree
depend on or reflect the differences in the 4n + 2 and
the 4n conjugated circuits.

In Figure 85 we show molecular graphs of a
selection of anti-aromatic structures which also have
odd-member rings. All the structures are assumed
to be planar, and all the CC bonds are assumed to
be of similar length. The RE and the degree of anti-
aromaticity, (A, are listed in Table 35. For the last
four structures shown in Figure 85, it is difficult to

guess by inspection whether they will have positive
or negative RE.

D. Clar Valence Structures and Aromaticity
An interesting aspect of the present analysis of

conjugated compounds via conjugated circuits is to
see that apparently similar compounds may show
different RE and different levels of aromaticity. For
example, the “cis” isomer of dibenzpentalene (8/68)
has RE about half that of the “trans” dibenzpentalene
isomer (9/68). When we compare RE values of the
two isomers, we see that the major cause for the
“weakening” of the “cis” isomer is appreciable loss in
RE due to reduced contributions of R1 conjugated
circuits. This becomes apparent from Figure 86, in
which we have inscribed the π-sextet of Clar in the
benzene rings of dibenzpentalenes. As we can see,
the “trans” isomers can support two π-sextets, while
the “cis” dibenzpentalene can have only one π-sextet
(for which one can draw two symmetry-equivalent
Clar’s valence structures..

In view of the pivotal importance of Clar’s aromatic
π-sextets as well as Clar’s valence structures of

Figure 85. Molecular graphs of additional anti-aromatic structures and polycyclic conjugated hydrocarbons, for which it
is difficult to determine by inspection if their RE is positive or negative.

Table 35. Expressions for Molecular RE, the Graph Theoretically Computed RE, and Percentage Anti-aromatic
Character for a Selection of Additional Anti-aromatic Hydrocarbons (Shown in Figure 85)

molecule RE expression REa arom. (%)

1/85 (2R1 + 2Q1 + 2Q2)/3 -0.047 -3.94%
2/85 (2R2 + 10Q2)/4 -0.482 -58.92%
3/85 (4R2 + 6Q2 + 2Q3)/4 -0.054 -7.44%
4/85 (8R2 + 8R3 + 4R4 + 4Q1 + 16Q2 + Q4 + 4Q5)/9 -0.452 -43.06%
5/85 (2R3 + 4Q2)/3 -0.347 -100%
6/85 (2R3 + 4Q2)/3 -0.347 -100%
7/85 (6R2 + 4Q2 + 2Q3)/4 +0.244 +31.94%
8/85 (4R2 + 6Q3 + 2Q4)/4 +0.336 +100%
9/85 (8R1 + 4R2 + 8R3 + 8Q2 + 17Q3)/9 +0.666 +59.02%
10/85 (16R1 + 16R3 + 20R4 + 4Q2 + 24Q3 + 18Q4 + 20Q5)/14 +0.887 +85.65%

a R1 ) 0.841 eV, R2 ) 0.336 eV. Q1 ) -0.650 eV, Q2 ) -0.260 eV.

Figure 86. Clar structures for the “cis” and “trans”
isomers of dibenzpentalene, showing why the “cis” isomer
has a RE that is about half that of the “trans” isomer.
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benzenoid hydrocarbons for characterization of aro-
matic compounds for a good proportion of this review,
we will define them here formally:

Definition: Aromatic π-sextets are defined as six
π-electrons localized to a single benzene ring sepa-
rated from adjacent benzene rings by formal CC single
bonds.

Definition: Clar’s valence structure of a benzenoid
hydrocarbon is a valence structure having the maxi-
mal number of disjoint aromatic π-sextets. Carbon-
carbon bonds of molecular fragments not involved in
formation of aromatic π-sextets must necessarily have
a unique CC double or CC single bond type.

We will later devote more attention to Clar’s
structures, which, as we will see, can be viewed as a
collection of a subset of Kekulé valence structures.
As we have mentioned, in the early pre-quantum era
of chemistry, Fries suggested that a single Kekulé
valence structure having the maximal number of
Kekulé benzene rings is dominant. The early VB
calculations, on the other hand, assumed that all
Kekulé valence structures contribute equally toward
the description of conjugated polycyclic hydrocarbons.
One can view Clar’s approach as a compromise.
According to Clar, some Kekulé valence structures
apparently are more important for characterization
of properties of benzenoid hydrocarbons than others!
We can summarize the starting point of Clar by
paraphrasing the well-known quotation of George
Orwell from his Animal Farm by saying, “All Kekulé
structures are equal, but some are more equal than
others.” These “more equal than others”, as we will
see later, are Kekulé valence structures of the
maximal degree of freedom. These are the very same
Kekulé valence structures which, when super-
imposed, produce Clar’s structure of a benzenoid
hydrocarbon.

In Figure 64 we illustrated “macrocyclic” fused
benzene rings, which give rise to 4n conjugated
circuits. The smallest possible 4n conjugated circuit
in macrocyclic benzenoids involves 12 carbon atoms,
corresponding to Q3. Large 4n conjugated circuits do
not make a visible destabilizing contribution to
molecular resonance energy, as we have already seen
with aceheptylene. However, this is not to say that
the larger conjugated circuits, be they 4n + 2 or 4n,
do not play a role in determining the properties of
conjugated hydrocarbons. For example, [18]annulene,
synthesized by Sondheimer93,549-551 and considered
properly as (fully) aromatic, is aromatic because of
the 18-carbon conjugated circuits (R4). The same is
true of the largest yet reported monocyclic system of
conjugated π-electrons, having 30 carbon atoms.645

XXI. Biphenylenes

We collected in Figure 66 non-benzenoid struc-
tures, derivatives of biphenylene, many of which are
viewed as aromatic despite the presence of 4n cir-
cuits. The structures in the upper part of Figure 66
have a single cyclobutadiene ring, while those in the
lower part of Figure 66 have two or more cyclobuta-
diene rings. In Table 25 we gave the expressions for

the RE and the RE computed by the graph theoretical
approach for the compounds shown in Figure 66. In
Table 36 we compare the REPE for the same biphen-
ylene derivatives with the computed aromaticity
indices shown in the last column of the table. In
Figure 87 we show a plot of REPE values against the
aromaticity index A. We see a fairly good linear
relationship between the computed REPE and the
aromaticity index A given by [RE(4n + 2) + RE(4n)]/
RE(4n + 2). The calculations of A and RE were based
on the values R1 ) 0.841 eV, R2 ) 0.336 eV, Q1 )
-0.650 eV, and Q2 ) -0.260 eV.

The most aromatic among biphenylenes apparently
are molecules with naphthalene and phenanthrene
units. Among them, those with linearly fused rings
have greater RE than the corresponding “bent”
isomers. In particular, observe the difference in the
RE between the “linear” 2,3,6,7-dibenzobiphenylene
(4/66) and “bent” 1,2,7,8-dibenzobiphenylene (5/66).
In contrast, in the case of benzenoid hydrocarbons
built by fusing only hexagonal rings, the “bent”
isomers have a greater stability (greater RE) than
linear acenes having the same number of fused rings.
Thus, phenanthrene has higher RE than anthracene.
In the case of biphenylene derivatives, just the
opposite is the case. Here we find that isomers having
linearly fused rings (such as 9/66) are relatively more
aromatic than isomers in which rings are angularly
fused (such as 10/66). On this basis, we may conclude
that, within such a model, the so-called anti-kekulene
(compound shown in Figure 88) will not be particu-
larly stable. Plavšić and collaborators646 calculated
RE for anti-kekulene and anticipated that its prepa-

Table 36. REPE and the Percentage Aromatic
Character for a Selection of Biphenylene Derivatives
(Shown in Figure 66)

molecule REPE arom. (%) molecule REPE arom. (%)

1/66 0.073 48.4 10/66 0.052 32.6
2/66 0.099 70.4 11/66 0.035 21.9
3/66 0.083 56.1 12/66 0.035 21.9
4/66 0.109 82.4 13/66 0.031 18.8
5/66 0.099 72.3 14/66 0.024 15.9
6/66 0.094 65.3 15/66 0.096 63.2
7/66 0.064 44.3 16/66 0.062 40.0
8/66 0.047 29.5 17/66 0.074 51.9
9/66 0.063 40.1 18/66 0.099 60.5

Figure 87. Plot of REPE values against the aromaticity
index A for the biphenylene derivatives shown in Figure
66 (listed in Table 36).
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ration, though not impossible, would be difficult in
view of its low RE.

However, we have to emphasize that the conclusions
drawn were based on assuming that all Kekulé
valence structures make an equal contribution to the
molecular RE, just as we made the same assumption
in calculating RE for benzenoid hydrocarbons. We
also learned from RE for benzenoid hydrocarbons
that, for a structure to exist, its REPE has to be above
the critical value of about 0.060 eV. From Table 36
we see that bent [3]phenylene, according to our
calculations, has REPE of only 0.047 eV s yet it
exists, and it has been synthesized. Moreover, the
even larger cis-[4]phenylene (12/66), with REPE
0.035 eV, and cis-[5]phenylene (14/66), with REPE
0.024 eV, for which the corresponding REPE values
are still smaller, have been prepared. This clearly
points to difficulties when one is extending the
present model of conjugated circuits to non-benzenoid
systems having, besides 4n + 2, also 4n conjugated
circuits based on the assumption that all Kekulé
valence structures make equal contributions to mo-
lecular stability. Either the parametrization of con-
tributing Q1, Q2, Q3, etc. has to be drastically modi-
fied, or not all the Kekulé valence structures make
equal contributions to molecular RE. We will see later
(in section XXXII.B, Biphenylenes Revisited, as well
as in the Epilogue) not only that different Kekulé
valence structures do not play equally important
roles in the characterization of molecules as ben-
zenoid or non-benzenoid, but also that by extending
the idea of Clar’s aromatic π-sextets to non-benzenoid
systems, we can obtain satisfactory stability and
REPE for non-benzenoid “bent” [n]phenylenes, which
have been found to have too low REPE to exist.

In Figure 89 we illustrate a number of benzo-
cyclobutadiene derivatives having cyclobutadiene as
a terminal ring. In Table 37 we list the RE for the
compounds shown in Figure 89. Observe that the
biphenylene derivatives shown in Figure 66 that have
cyclobutadiene rings situated between benzene rings
are more aromatic than the biphenylene derivatives
having the four-member ring at the “end” of the

molecule. We will revisit biphenylene derivatives
later, but it may be mentioned here that some caution
has to be taken when considering RE and the degree
of aromaticity of molecules, particularly those shown
in Figure 89, in which contributions from benzenoid
fragments may overshadow the local anti-aromatic
features associated with the cyclobutadiene fragment.
As we can see, the aromaticity index A increases with
the size of the molecules shown in Figure 89, but all
of them have the same local features found in
benzocyclobutadiene, which as we can see has nega-
tive RE. So, while the remaining structures shown
in Figure 89 may have the overall RE positive, locally
they may all be unstable, and thus not able to exist s
at least that follows if we assume that all Kekulé
valence structures play an equal role in characteriza-
tion of these molecules.

XXII. Fully Anti-aromatic Hydrocarbons
... the polymethines with 4n atoms should not
only be less stable than those with (4n+2) atoms
but should be less stable even than their open-
chain counterparts; in other words the 4n-atom
systems should not be aromatic but should
actually be antiaromatic.

A. L. Chung and M. J. S. Dewar647

Elusive cyclobutadiene is the smallest prototype of
anti-aromaticity, the concept introduced by Chung
and Dewar and advanced by Breslow.648,649 We will
refer to structures that have only 4n conjugated
circuits as “fully anti-aromatic” structures, in order
to emphasize their anti-aromatic character in dis-
tinction to anti-aromatic structures, which contain
also some 4n + 2 “impurity”. All the structures il-
lustrated in Figure 90 are therefore “fully anti-
aromatic”, assuming that they are planar and that
all CC bonds are of approximately equal length.
Under such assumptions, we can calculate their RE
and anti-aromatic character. The count of conjugated
circuits gives the following expressions for their anti-
aromatic destabilization energies:

In all cases shown in Figure 90, we have only two
Kekulé valence structures. However, “fully anti-
aromatic” systems can have more than two Kekulé
valence structures, as illustrated in Figure 91. The
expressions for their anti-aromatic destabilization
energy are listed in Table 38. We see that the
presence of only 4n conjugated circuits is a necessary
condition for a structure to be a candidate for being
anti-aromatic, or “fully anti-aromatic”. However, this
is not sufficient. For such compounds to be truly anti-
aromatic, they must be planar and have all CC bonds
of approximately equal length.

To what extent formally classified anti-aromatic
structures display anti-aromatic features will depend
on the extent to which unfavorable destabilization
due to 4n contributions can be relieved. Molecules
like pentalene (3/90), heptalene (4/90), and s-in-
dacene (5/90) are planar, but they can relieve the

Figure 88. Clar structure of anti-kekulene.

Figure 89. Derivatives of biphenylene having a terminal
cyclobutadiene ring.
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destabilizing role of 4n conjugated circuits by assum-
ing asymmetrical forms. Thus, they no longer have
all CC bonds of approximately equal length. The
same would be true for a planar model of cyclobuta-
diene in which cyclobutadiene would assume a rect-
angular geometry (symmetry D2h) rather than a
regular square form (symmetry D4h).650,651 Cyclo-
octatetraene assumes a tub conformation,652,653 in
which unfavorable 4n conjugation is dramatically
reduced compared with hypothetical anti-aromatic 4n

contributions for a planar structure. In all the cases
mentioned, the symmetrical (planar) form, which has
the highest occupied MO degenerate, will undergo
Jahn-Teller distortion654 and produce two symmetry-
equivalent less symmetrical geometries. In the case
of as-indacene and other less symmetrical systems,
the structures obtained as a result of the Jahn-Teller
theorem need not be symmetry-equivalent. Never-
theless, they allow molecules to “escape” hypothetical
anti-aromatic form and reduce the contributions of
destabilizing 4n conjugated circuits.

Almost half of the potentially anti-aromatic struc-
tures shown in Figures 90 and 91 have rather small
destabilization energy coming from the relatively
large 4n conjugated circuits having 16, 20, and 24
π-electrons. These conjugated circuits are expected
not to make significant contributions to destabiliza-
tion, if any. It will be of interest to see if any of these
structures can be synthesized and to see to what
extent this prediction will be fulfilled.

XXIII. Aromaticity/Anti-aromaticity
The concept of anti-aromaticity remains useful and

challenging to experimental as well as theoretical
chemists, despite the difficulties in obtaining molec-
ular systems that will show the full impact of the
presence of anti-aromatic 4n conjugated circuits in

Table 37. Expressions for Molecular RE and Percentage Aromatic Character for a Selection of Biphenylene
Derivatives Having a Terminal Cyclobutadiene Unit (Shown in Figure 89)

molecule RE expression RE arom. (%)

1/89 (2R1 + 2Q1 + 2Q2)/3 -0.117 -17.3
2/89 (6R1 + 2Q1 + 2Q2 + 2Q3)/4 0.694 55.9
3/89 (6R1 + 2R2 + 4Q1 + 2Q2 + Q3)/5 0.210 18.8
4/89 (6R1 + 4R2 + 2R3 + 2Q1 + 2Q2 + 2Q3 + 2Q4)/5 0.853 66.1
5/89 (10R1 + 6R2 + 3R3 + 6Q1 + 2Q2 + Q3)/7 0.755 50.3
6/89 (14R1 + 6R2 + R3 + 6Q1 + 4Q2 + Q3)/8 0.991 58.3
7/89 (12R1 + 4R2 + R3 + 4Q1 + 4Q2 + 2Q3 + Q4)/7 1.016 62.9

Figure 90. Fully anti-aromatic structures having K ) 2.

Figure 91. Fully anti-aromatic structures having K > 2.

Table 38. Expressions for Molecular RE and the
Graph Theoretically Computed RE for the Fully
Anti-aromatic Hydrocarbons Shown in Figure 91

molecule RE expression RE

1/91 (6Q2)/3 -0.520
2/91 (4Q1 + 4Q4)/4 -0.650
3/91 (8Q2 + 7Q3)/5 -0.416
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a molecule. That the presence of 4n conjugated
circuits is detrimental to molecular stability has been
witnessed already for aromatic compounds in which
4n + 2 conjugated circuits dominate and enforce the
planar geometry for the systems in which 4n conju-
gatedcircuitsarealsopresent.HafnerandSchneider553

considered alkyl derivatives of aceheptylene and
observed that these compounds depart somewhat in
their properties from the “standard” non-benzenoid
conjugated systems. Clearly this “departure” is due
to the presence of anti-aromatic 4n contributing
conjugated circuits.

For a compound to qualify as anti-aromatic, how-
ever, we must have a dominant anti-aromatic con-
tribution. Hafner and co-workers655 designed a clever
way to arrive at anti-aromatic compounds by “forc-
ing” a molecule that has undergone the Jahn-Teller
distortion back into a more symmetrical geometric
form. This was accomplished by introducing bulky
tert-butyl substituents on the s-indacene skeletal
frame. Calculations done by Gellini et al.656 show that
CC bonds in s-indacene alternate in length, assuming
typical CC double (around 1.32-1.33 Å) and CC
single (1.47-1.49 Å) bond lengths, respectively, and
results in a structure having C2h symmetry. This
structure represents a more stable system than the
hypothetical structure without bond alternation (hav-
ing symmetry D2h). In contrast, calculations on
1,3,5,7-tetra-tert-butyl-s-indacene (TTBI) show that
the more stable system is the one with more equal-
ized peripheral CC bond lengths (around 1.40-1.41
Å), in agreement with the available X-ray data.
Hafner and co-workers, after careful analysis of
infrared and Raman spectra of 1,3,5,7-tetra-tert-
butyl-s-indacene, concluded that “The tert-butyl effect
on the TTBI structure results in a larger delocaliza-
tion of the π-electron density over the indacene plane,
giving rise to a molecular structure close to D2h
symmetry.” 656

Hence, because tert-butyl groups do not constitute
conjugated fragments and are ignored in the conju-
gated circuits model, we may conclude that “modi-
fied” s-indacene, that is, 1,3,5,7-tetra-tert-butyl-s-
indacene, represents an anti-aromatic species. More
recently, Baldridge and Siegel657 have theorized that
cyclooctatetraene (COT) can similarly be forced to
adopt a planar rather than a tub conformation. A flat
form for COT would make contributions from 4n
conjugated circuit be “felt” and thus would approach
an anti-aromatic structure. According to calculations,
the two annealed bicyclo[2.2.1]hexene fragments
would result in a planar structure that would have
localized π-electrons. Matsuura and Komatsu658,659

synthesized the compound, and indeed the X-ray
confirmed the calculations indicating the presence of
CC double bonds in the endo conformation with
respect to annealed bicyclo[2.2.1]hexeno fragments.
Adding four annealed fragments resulted in a planar
structure with exocyclic CC double bonds with re-
spect to the fragments. Finally, by placing annealed
bicyclo[2.2.1]hexeno fragments two bonds apart, one
prevents CC double bond “fixation”, and as a result
one obtains a fully anti-aromatic “modified” cyclooc-
tatetraene. These recent achievements show that

anti-aromaticity that was for the most part “ficti-
tious” is becoming “factual”.

An indirect “proof” that anti-aromatic compounds
are elusive comes from data on inter-stellar com-
pounds.660-662 In view of the low density of matter
and extremely low temperatures in outer space,
structures that would be difficult to observe in the
laboratory may have long enough life in the inter-
stellar space to be detected. Thus, for instance, among
others, the smallest aromatic compound, cyclic C3H3

+,
has been identified in the inter-stellar space. The
search for anti-aromatic compounds in the inter-
stellar space thus appears to be an interesting
project. However, as of today, no anti-aromatic
compounds have been detected in outer space,663

although, as is well known, the inter-stellar space is
rich in hydrocarbons.

In discussing aromaticity/anti-aromaticity, the prob-
lem that needs better understanding is why some
aromatic compounds (having 4n conjugated circuits)
have modified properties, as was the case with
Hafner’s hydrocarbons, and in other compounds, like
biphenylene, 4n conjugated circuits apparently do not
show a visible manifestation of the presence of 4n
conjugated circuits. We will address this problem in
section XXXII (Biphenylenes Revisited).

XXIV. ABC of Aromaticity
We can summarize the graph theoretical approach

to aromaticity by focusing on the three important
aspects pertaining to aromaticity: (A) classification
of compounds as fully aromatic or less aromatic; (B)
characterization of the degree of aromaticity of fully
aromatic compounds; and (C) discrimination of the
local aromatic features of larger compounds. We will
briefly outline each of these three important steps
for clarification of the concept of aromaticity as it
applies to polycyclic conjugated hydrocarbons. From
Table 39, which summarizes the ABC of aromaticity,
one can immediately see that all the three indices
are related. In particular, it follows that for aromatic
compounds A > 0, for azulene and so-called “azule-
noid” compounds, built from five- and seven-member
rings, B ) 0, while for rings not participating in
conjugated circuits and thus not contributing to
molecular RE, like the central rings of perylene and
bisanthene, C ) 0.

A. A of Aromaticity
As we have seen, aromaticity has been defined in

terms of the presence and the absence of 4n + 2 and
4n conjugated circuits. The approach has led to a
numerical index that estimates the degree of aroma-
ticity for compounds having both 4n + 2 and the 4n
conjugated circuits. It appears quite natural to expect

Table 39. ABC’s of Aromaticity

A )
RE(4n + 2) - RE(4n)
RE(4n + 2) + RE(4n)

aromaticity

B )
RE(R1) - RE(Rn*1)

RE(R1) + RE(Rn*1)
benzene character

C )
RRE(R1) - RRE(Rn*1)

RRE(R1) + RRE(Rn*1)
Clar index
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that an index of aromaticity is sensitive to the
relative roles of 4n + 2 and 4n conjugated circuits.
Construction of such an index is accomplished by
partitioning RE into contributions arising from 4n + 2
conjugated circuits, RE(4n + 2), and destabilizing
contributions arising from 4n conjugated circuits,
RE(4n). By following this reasoning, we arrive at the
index A given in Table 39.

The index A assigns the value A ) 1 to all
benzenoid hydrocarbons, which are thus all charac-
terized as “fully aromatic”. However, as we know,
there are variations of the degree of aromaticity even
among benzenoid hydrocarbons, though they may be
relatively small. We have already seen that “fully
benzenoid” hydrocarbons, like triphenylene, diben-
zopyrene, hexabenzocoronene, and other 6n π-elec-
tron systems, show unusual stability. Hence, we need
a measure of aromaticity that can differentiate
aromatic character among “fully aromatic” com-
pounds.

B. B of Aromaticity
In order to characterize these small variations of

aromatic features of benzenoid hydrocarbons, we
consider another index that will measure the degree
of similarity of a given benzenoid hydrocarbon to
benzene. Such an index, referred to as the index of
benzene character B of benzenoid hydrocarbons, was
proposed in 1987 as follows:664

Here, RE(R1) is the part of the computed resonance
energy that comes from the presence of the conju-
gated circuits R1, while RE(Rn*1) is the part of the
computed resonance energy that comes from the
presence all other conjugated circuits. The denomina-
tor, [RE(R1) + RE(Rn*1)], is in fact the total molecular
RE, which thus makes B a dimensionless number,
always less than one, except for benzene, for which
by definition B ) 1.

In Table 40 we have collected B indices for a
number of smaller benzenoid hydrocarbons. For
comparison, we also show the corresponding aroma-
ticity indices based on bond lengths. According to
Julg,665-667 one can derive an index of aromatic
character from the differences between the actual CC
bond lengths in a benzenoid hydrocarbon and the
average CC bond distance 〈d〉 using the expressions

The numerical value of index constructed in this way
will depend on the bond lengths used, which could
be experimental bond lengths or calculated ones. One
of the two Julg’s indices shown in Table 40 is based
on experimental CC bond lengths, and the other is
based on quantum chemical calculations using the
AM1 model (which is attributed to Dewar). As we can
see from Table 40, the magnitudes of the derived
indices based on bond lengths vary somewhat in a
relatively small interval, while graph theoretically

derived B indices vary in the interval from about 1/2
to 1, the largest possible value assumed to belong to
benzene. A comparison between the B index of
aromaticity and indices based on the approach of Julg
shows some differences for individual benzenoids. For
example, the B indices for naphthalene, perylene, and
quaterrylene, which are all formally built by con-
necting naphthalene units by essentially single CC
bonds, are the same. The Julg indices based on AM1
calculations for the same compounds show a decreas-
ing trend, the largest value belonging to naphthalene.
Clearly, the decrease of Julg’s index can be attributed
to the increase in the number of essentially single
CC bonds in perylene and quaterrylene, which do not
participate in conjugation but nevertheless influence
the average bond distance 〈d〉. For more details on
Julg’s bond length indices, the reader should consult
a recent paper by Kiralj and Ferreira668 on predicting
CC bond lengths in planar benzenoid polycyclic
hydrocarbons, where one can also find a list of over
300 experimental and calculated bond lengths for
some 27 smaller benzenoid hydrocarbons.

One can construct other indices for benzene char-
acter of benzenoid hydrocarbons, which we will
designate as B′ in order to differentiate them from
the index B. For example, one can consider the
Kekulé index,595 which assigns to individual Kekulé
valence structures an index derived from local prop-
erties of molecular orbitals, and take the average over
all Kekulé structures. Even though for many Kekulé
structures this index is bigger than the Kekulé index
of benzene, the average Kekulé index appears smaller
for polycyclic benzenoid hydrocarbons than it is for
benzene. However, for an index to reflect benzene
character, one expects certain trends among struc-
turally related benzenoids to be satisfied, such as

B ) [RE(R1) - RE(Rn*1)]/[RE(R1) + RE(Rn*1)]

J ) 1 - 255[Σ/〈d〉]2

Σ ) Σi[di - 〈d〉]2/N

Table 40. B Indices for a Number of Smaller
Benzenoid Hydrocarbons

Julg’s values

benzenoid B index exptl calcd (AM1)

benzene 1.000 1.000 1.000
naphthalene 0.751 0.932 0.928
anthracene 0.630 0.889 0.878
phenanthrene 0.778 0.878 0.928
tetracene 0.561 0.870 0.849
triphenylene 0.801 0.906 0.946
chrysene 0.734 0.848 0.922
pyrene 0.630 0.916 0.899
perylene 0.751 0.877 0.890
dibenzo[a,h]anthracene 0.742 0.972 0.906
picene 0.670 0.900 0.921
benzo[e]pyrene 0.712 0.877 0.890
pentacene 0.522 0.880 0.826
dibenzo[a,c]anthracene 0.796 0.891 0.915
dibenzo[fg,op]tetracene 0.800 0.881 0.944
benzo[ghi]perylene 0.649 0.875 0.921
coronene 0.585 0.955 0.933
quaterrylene 0.751 0.889 0.877
hexabenzocoronene 0.741 0.910 0.848
kekulene 0.690 0.877 0.881

B′(naphthalene) > B′(anthracene) >
B′(tetracene) > ...

B′(fully benzenoid hydrocarbons) >
B′(benzenoid hydrocarbons)
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While the average Kekulé index satisfies the first
condition, it apparently fails to satisfy the second,
because B′(naphthalene) > B′(triphenylene), naph-
thalene having migrating π-sextets and triphenylene
being a fully benzenoid hydrocarbon.

Nevertheless, the Kekulé index, which assigns to
individual Kekulé valence structures a numerical
value, is of some interest, as it reflects the relative
importance of individual Kekulé valence structures,
a topic which has received some but apparently not
sufficient attention in the literature.

C. C of Aromaticity
Some caution is required when considering bigger

and bigger molecules, including benzenoid hydrocar-
bons, in which there could be considerable variations
in local properties. Already in smaller benzenoids,
such as perylene and bisanthene, in which the central
CC bonds are essentially single (that is, they are
single CC bonds in all Kekulé valence structures),
we have portions of a molecule that are not contrib-
uting to RE, and thence to aromaticity. By averaging
CC bond lengths, the contributions from various
rings, or the contributions from different Kekulé
valence structures, we may be diluting the aromatic
characteristics of a molecule with spurious contribu-
tions. It does appear that useful characterization of
benzenoid hydrocarbons may follow if we consider
individual benzene rings, rather than taking the
average of such contributions from all rings. This
leads us to a ring index which we refer to as C of
aromaticity, where C stands for Clar, which is defined
as539

RRE(R1) is the part of the computed ring resonance
energy of individual benzene rings that comes from
the presence of the conjugated circuits R1, while
RRE(Rn*1) is the part of the computed contribution
to the resonance energy for the considered ring that
comes from the presence of all other conjugated
circuits contributing to RE to the particular benzene
ring. The denominator [RRE(R1) + RRE(Rn*1)] is in
fact the total ring resonance energy (RRE), which
thus makes C a dimensionless number, always less
than one, except for benzene, for which by definition
C ) 1. In the next section we give numerical
examples of the RRE.

XXV. Local Aromaticity
It is not only among benzenoids that different

molecules show different degrees of aromatic char-
acter, but within single polycyclic conjugated hydro-
carbons, different rings show different local aroma-
ticities. Dewar explicitly mentioned extending the
notion of aromaticity criteria to individual rings in
polycyclic systems.669 The pioneering work on bridg-
ing the gap between calculated MO results and
characterization of local aromaticity of benzene rings
was attributed to Polansky and Derflinger,582 whose
work deserves more attention. They found some

justification for Clar’s model of localized benzenoid
regions in polycyclic conjugated benzenoids, and they
derived a ring index characterizing individual ben-
zene rings of a molecule. This ring index is deter-
mined from computed MO coefficients when the MO’s
of the system are expanded in sets of MO’s of each
ring. The “benzene character” for benzene rings of
numerous smaller benzenoid hydrocarbons reported
by Polansky and Derflinger was based on using the
HMO approach, but conceptually the approach is
quite general and can be extended to more sophisti-
cated MO calculations.

A. The Approach of Polansky and Derflinger
In the standard MO approach to conjugated hy-

drocarbons (e.g., in the HMO calculations), the mo-
lecular orbitals are expressed as a linear combination
of atomic orbitals. However, it is possible, as Polan-
sky and Derflinger outlined,582 to express the same
molecular orbitals in terms of molecular orbitals of
the benzene ring. As a result, instead of obtaining
information on the contributions of molecular orbitals
to the bond orders, one obtains the contributions of
a set of benzene orbitals to individual benzene rings
of polycyclic benzenoid hydrocarbons. In other words,
the “benzene character” described by Polansky and
Derflinger, “is the projection of occupied π-MO’s in a
given hexagon L of a polycyclic benzenoid hydrocar-
bon onto the three occupied MO’s of a benzene
molecule located on that position.” 523

In Figure 92 we illustrate for a collection of smaller
benzenoid hydrocarbons the benzene ring indices as
reported by Polansky and Derflinger.582 The results
are quite interesting, if not astounding. As one can
see, there are considerable variations among indi-
vidual rings within a molecule and between rings in
different molecules. If we ignore diphenyl and
hexaphenyl, in which benzene rings are bridged by
a single CC bond rather than fused, and in which
higher values for the ring indices were found than
in benzene, the ring indices of Polansky and Der-
flinger are smaller than the value for benzene,
varying between about 0.680 to 0.950. Observe also
that the variations are more pronounced in some
molecules than others. A more careful examination
of the results of Polansky and Derflinger shows that
the aromatic character of individual rings is far from
uniform. Moreover, the variations show some antici-
pated and some unexpected regularities. As a rule,
terminal rings in benzenoid hydrocarbons show
greater similarity to benzene, suggesting that the
local aromaticity may be influenced to a considerable
degree by specifics of molecular periphery patterns.
Highly significant are the observed large differences
in benzene character among many adjacent rings.
This is particularly visible in the cases of tri-
phenylene (6/92), tetrabenzanthracene (15/92), diben-
zopyrene (13/92), and hexabenzocoronene (20/92).
Observe that all the mentioned benzenoids are those
that Clar classified as “fully benzenoid”. In compari-
son with rings in other benzenoids shown in Figure
92, they all show a large benzene character for
benzene rings which are the sites of aromatic π-sex-
tets. It is significant vindication for Clar’s model of

C ) [RRE(R1) - RRE(Rn*1)]/
[RRE(R1) + RRE(Rn*1)]
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benzenoid hydrocarbons that in all cases the differ-
ences between ring indices parallel the expectation
based on Clar’s valence structure (which will be fully
elaborated later).

It is somewhat tedious to follow the calculations
of the “benzene character” of Polansky and Derflinger
directly from HMO theory as described by the au-
thors. Hosoya and co-workers reported that the
benzene characters (BC) can be expressed as a linear
combination of the Coulson bond orders for the six
bonds of a ring and three para-bonds of the same ring
using the expression

Here, p is Coulson’s bond order and pp is bond order
for para-bonds. Both summations assume for indices
that r > s. This is an interesting and much simplified
approach to MO ring indices; however, the indices
reported by Hosoya and co-workers are not quite
identical to those of Polansky and Derflinger. Re-
cently, Professor Hosoya informed me that the dif-
ference occurs because his group based their work
on SCF MO rather than on HMO calculations.670

B. Approaches Based on Bond Orders
One can arrive at ring indices for benzenoid

hydrocarbons (and not only for benzenoids) by con-

sidering CC bond orders rather than benzene MO
components. In Figure 93 we show Pauling fractional
bond orders for CC bonds in phenanthrene, which are
1/5, 2/5, or 3/5, depending on the location of the CC
bond. Fractional bond order counts only the occur-
rence of CC double bonds in the collection of Kekulé
valence structures, while the Pauling bond order is
given by adding one to the fractional part. If we
consider the fractional parts of CC bond orders for
the six CC bonds within a single benzene ring, we
obtain for the peripheral benzene ring 2(3/5) +
4(2/5) ) 14/5, or 2.80. In contrast, when we add the
fractional parts of CC bond orders for the six CC
bonds of the central benzene ring, we obtain 4/5 +
2(2/5) + 3(1/5) ) 11/5, or 2.20. The resulting quanti-
ties represent essentially the average CC bond orders
for individual benzene rings. Clearly, the peripheral
ring has a larger average bond order than the central
ring, which means it has a smaller average CC bond,
which again indicates a tighter ring or, to use the
terminology of Eric Clar, more aromatic π-sextets. We
will refer to benzene ring indices obtained from
Pauling fractional bond orders simply as the Pauling
ring indices, even though they have not been consid-
ered by Linus Pauling (or, as far as we know, anyone
else for that matter).671 The average bond orders of
individual rings gives the corresponding molecular
quantity, which when bond orders are converted to
bond lengths will correspond to an index of benzene
character analogous to Julg’s structural aromaticity.
For example, for phenanthrene we obtain in this way
(1/3)(2.80 + 2.80 + 2.20) ) 2.60. This differs slightly
from the corresponding index based on the sum of
bond orders, because CC bonds of fusion have been
counted twice, once for each ring. At the very end of
this review, in Appendix 4 on Prevention of Errors,
we have briefly outlined the “correct” ring indices
based on partitioning of π-electrons to individual
rings so that contributions of π-electrons in CC
double bonds belonging to two adjacent rings are not
counted twice. We will see that in this way we
maintain the correct count of π-electrons and, as a
bonus, we obtain “numerical Kekulé valence struc-
tures”, to be contrasted to the usual “geometrical”
Kekulé valence structures. Even more importantly,
in this way we can construct a single (numerical)
valence structure to replace a set of Kekulé valence
structures, to replace a subset of Kekulé valence
structures such as those defining the Clar structure,
or to replace several Kekulé structures when there
are more than one Fries Kekulé structure.

In Figure 94 we show the Pauling ring indices for
a selection of smaller benzenoid hydrocarbons. A

Figure 92. Benzene ring indices for a collection of smaller
benzenoid hydrocarbons, as reported by Polansky and
Derflinger.582

BC ) [(1/3)(2∑prs - ∑pprs) - 2]/1000

Figure 93. Pauling fractional bond orders for CC bonds
in phenanthrene, and Pauling ring indices for two non-
equivalent rings.
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comparison of Figure 94 with the corresponding
results of Polansky and Derflinger (Figure 92) shows
an overall remarkable parallelism. Observe that in
all cases the rings with the maximal “benzene
character” are the same, just as the rings with the
least “benzene character” again coincide in both
approaches. This occurs even though Polansky and
Derflinger’s approach is based on the MO method and
the Pauling ring indices can be viewed as a result of
VB computations, or even more correctly, as the
results of the graph theoretical considerations. The
qualitative agreement between the two approaches
shows that both schemes differentiate terminal rings
as those with the “benzene character”, which in Clar’s
model correspond to aromatic π-sextets. The next in
relative magnitude are the rings that Clar referred
to as “migrating π-sextets”, which are benzene rings
that in some Clar structures are shown as aromatic
π-sextets but in other Clar structures of the same
molecule are rings having CC double bonds. This is,
for instance, the case with the benzene rings of
naphthalene and anthracene. Still smaller “benzene
character” belongs to benzene rings which in Clar
structures have fixed CC double bonds, as is the case
with the central bond in phenanthrene or pyrene.
Finally, the smallest “benzene character” belongs to
rings to which Clar refers as “empty”, the rings which
connect non-adjacent π-aromatic sextets, illustrated
by the central ring of triphenylene or the two
“branching” rings of tetrabenzanthracene.

A parallelism between the magnitudes of the
Pauling ring indices and the graph theoretical ring
indices (to be discussed in the next section) should
also be noticed. Observe in particular that in both
cases linearly fused benzene rings, such as the rings
of anthracene and the terminal rings of benzan-
thracene or dibenzanthracene, have the same ring
index values. Instead of the Pauling bond orders, one
can construct the benzene ring indices using the
Coulson bond orders. They show the same main
features that we have seen with ring indices based
on the Pauling bond orders.672 This approach of
constructing ring indices from bond orders is open
to other variants of the MO calculations, as il-
lustrated in Figure 95, in which we show the “ben-
zene ring characters” derived from SCF MO calcu-
lations of Dewar and Trinajstić.673 In this case, the
“benzene character” of a benzene ring is 4.000, the
highest possible value for a benzene ring, which was
in the case of the Pauling ring index 3.000. In order
to facilitate comparison between the different schemes
in Table 41, we collected for half a dozen smaller
benzenoids normalized “benzene characters” which

Figure 94. Pauling ring indices for a selection of smaller
benzenoid hydrocarbons.

Figure 95. “Benzene ring characters” based on SCF MO
calculations by Dewar and Trinajstić.633

Table 41. Comparison of the Ring Codes of Polansky
and Derflinger582 with Ring Codes Derived from the
Pauling Bond Orders, SCF MO Calculated Bond
Orders, and Graph Theory (GT) Bond Orders

Polansky
and

Derflinger

Pauling
bond

orders

Dewar
and

Trinajstić

GT
bond

orders

naphthalene 0.912 0.890 0.928 0.667
anthracene 0.893 0.833 0.875 0.500

0.840 0.833 0.908 0.500
phenanthrene 0.928 0.933 0.955 0.800

0.813 0.733 0.650 0.400
chrysene 0.923 0.917 0.945 0.750

0.832 0.750 0.865 0.500
triphenylene 0.940 0.963 0.903 0.899

0.741 0.557 0.515 0.222
dibenzanthracene 0.929 0.943 0.960 0.833

0.800 0.693 0.793 0.333
0.863 0.890 0.930 0.667

pentaphene 0.901 0.867 0.975 0.600
0.851 0.867 0.963 0.600
0.722 0.600 0.931 0.200

pyrene 0.882 0.890 0.940 0.667
0.818 0.723 0.795 0.333

perylene 0.885 0.890 0.878 0.667
0.699 0.443 0.683 0
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all assume benzene to have a ring index of magnitude
1.000. In the last column we included a simple graph
theoretical index of “benzene character” proposed
years ago by this author. Overall, there is consider-
able parallelism between different indices, with the
GT approach displaying the greatest range of values.
The range of values of the other indices can be
increased by subtracting some “dead weight”, a
constant term, but although such steps are legiti-
mate, they involve a degree of arbitrariness.

C. Graph Theoretical Approach to “Benzene
Character” of Fused Benzene Rings

From a graph theoretical point of view, benzene
character can be defined as the frequency of occur-
rence in the totality of Kekulé valence structures of
a benzenoid hydrocarbon of a ring formally as a
benzene ring. For example, as one can see from
Figure 18, where Kekulé structures of phenanthrene
are shown, the peripheral ring of phenanthrene
occurs in four out of five Kekulé valence structures
as a Kekulé benzene ring (having three CC double
and three CC single bonds). In contrast, the central
benzene ring of phenanthrene occurs as a benzene
ring in only two out of five Kekulé valence structures.
Hence, the corresponding graph theoretical indices
of local aromaticity for the two benzene rings are 4/5
and 2/5, respectively. Similarly, the graph theoretical
indices of benzo[ghi]perylene (Figure 15) are 6/14,
10/14, 8/14, and 2/14, the largest value belonging to
the benzene rings of π-aromatic sextets (see Figure
96, structure 17). Such results follow from the fol-
lowing definition:

Definition: The local aromaticity is given by the
quotient of the number of time a ring appears in all
Kekulé valence structures as a benzene Kekulé ring
and the number of Kekulé valence structures.

The graph theoretical approach to the local aro-
maticity of benzenoid hydrocarbons was outlined in
ref 508. The local aromaticity can be extracted from
the first entry in the ring codes507 that enumerate
conjugated circuits of different size for a single ring
within the totality of Kekulé valence structures for
benzenoid hydrocarbons. Dividing by K (the number
of Kekulé valence structures) gives the sought-after
graph theoretical “benzene character” for the ring
considered. The graph theoretical “benzene charac-
ter” is computationally simple and conceptually
elegant. It may be viewed as a generalization of the
very approach of Pauling characterization of CC bond
orders, except that now it applies to rings rather than
individual CC bonds.

In Figure 96 we show the ring indices for a
selection of smaller benzenoid hydrocarbons. The ring
indices show some interesting regularities. For ex-
ample, rings that comprise a “linear part” of a
benzenoid, e.g., all rings in naphthalene (1/96) and
anthracene (2/96), and two rings in benzanthracene
(4/96), pentaphene (8/96), and dibenzanthracene (12/
96), have a constant index value. The ring at the
“kink” position, however, as a rule shows a consider-
ably reduced ring index value. This is the case with
the central rings of phenanthrene (3/96), benzan-

thracene (4/96), and pentaphene (8/96). Interestingly,
this very same regularity is also present in the
“benzene characters” based on the Pauling bond
orders. Finally, again terminal rings have the largest
value for their ring indices. In the case of graph
theoretical indices, the magnitudes of the “benzene
character” are numerically smaller than for other
approaches, and only the benzene rings of “fully
benzenoid” hydrocarbons, e.g., triphenylene (6/96),
dibenzopyrene (13/96), and tetrabenzanthracene
(15/96), approach the value of one.

D. On Quantitative Interpretation of Clar Valence
Structures

Clar structures, just as Kekulé valence structures,
are first a novel pictorial representations of benzenoid
hydrocarbons in which differences between individual
benzene rings are emphasized. In Clar’s formula, the
benzene rings are shown either as the aromatic
π-sextets, as the migrating sextets, as rings with a
single CC double bond, or as the so-called “empty”
rings. Hence, clearly Clar’s pictorial representation
of benzenoid hydrocarbons is necessarily qualitative
in nature. However, by introducing the above graph
theoretical characterization of local benzenoid char-
acter of individual rings in benzenoid hydrocarbon,
we can assign to Clar’s structures quantitative con-
tent. We can make a step further and insist that this
link between Clar structures and their graph theo-
retical characteristics be viewed as the definition of

Figure 96. Graph theoretical ring indices for a selection
of smaller benzenoid hydrocarbons.765
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quantitative Clar valence structures. Hence, quanti-
tative Clar structures discriminate individual ben-
zene rings by assigning them numerical values based
on the value of the local aromatic index as outlined
above.

Definition: A quantitative Clar structure of a ben-
zenoid hydrocarbon is given by assigning to indi-
vidual benzene rings the numerical value R/K, where
R indicates the number of times the ring appears as
a Kekulé ring in the totality of Kekulé structures of
the molecule.

The numerator R is given by the count of the
conjugated circuit R1 for individual rings. Consider
for example benzanthracene, the benzene rings of
which have the ring indices 4/7, 4/7, 2/7, and 6/7, as
illustrated in the middle on the left in Figure 97,
where the Clar structure of benzanthracene is shown
at the top. The terminal ring, having the local
aromatic index of 6/7, belongs to the π-aromatic
sextet of the Clar formula for benzanthracene. The
Clar formula for benzanthracene also has a migrating
sextet, which is located at the ring having local
aromatic character of 4/7. Finally, the “kink” ring of
benzanthracene, which has the local benzene char-
acter of only 2/7, corresponds in the Clar formula to
an almost ”empty” ring. The “empty” rings have no
CC double bonds, but the benzene rings may have a
single isolated CdC bond. In Figure 97 on the right,
we also include Clar structures of benztetracene and
show the corresonding ring indices for this molecule.
As we can see, the numerical characterization of the
rings has slightly changed: the migrating π-sextets
are here associated with a smaller numerical ring
value, which is a consequence of increased domain
available for migration. Clearly, the less π-sextets are
localized, the lesser contributions they make to RE
and molecular stability, and the more π-sextets are
localized, the greater contributions they make to RE
and molecular stability.

At the bottom of Figure 97, we show the numerical
characterization of Clar structures of benzanthracene
and benzotetracene based on the use of only Kekulé
structures contributing to the Clar structure. As we
can see, and as is to be expected, in this case the

numerical values that the aromatic π-sextets receive
equal one.

A close look at Figure 96, in which there are several
“fully aromatic” compounds, does show that the
“empty” rings described by Clar are not quite “empty”
but are associated with rather very low magnitudes
for the ring indices. For instance, the “empty” ring
of triphenylene has the value 2/9, that of dibenzopy-
rene has the value 4/20, and the same value in
tetrabenzanthracene (written as 8/40) (structures
6/96, 13/96, and 15/96, respectively). There are few
rings with the graph theoretical index zero, e.g., the
central rings in zethrene (14/96), perylene (16/96),
and bisanthene (18/96), all of which are associated
with the presence of essentially single and essentially
double CC bonds. All that we did in this linkage
between the qualitative and the quantitative Clar
formulas was to assign numerical values to verbal
descriptions, such as “π-sextet”, “migrating sextet”,
and “empty ring”. In different molecules, the same
qualitative terms may have slightly different numer-
ical values, but that is how it should be! When one
considers quantitative models, there is no a priori
reason why, for example, the π-aromatic sextet of
triphenylene should be identical to the π-aromatic
sextet in, say, phenanthrene, or why the empty ring
in triphenylene should be identical to the empty rings
of perylene.

We may add that, in a similar way, one can
“upgrade” Kekulé valence structures by assigning to
individual Kekulé structures a numerical parameter
based on some structural considerations. In fact,
enumeration of conjugated circuits within individual
Kekulé valence structures leads to such quantitative
Kekulé valence structures. For example, one can
assign to each Kekulé valence structure as the weight
the relative contribution that the particular structure
makes to the molecular RE. Thus, the two non-
equivalent Kekulé valence structures of naphthalene
will have weights (2R1)/3 and (R1 + R2)/3, respec-
tively. To obtain numerical equivalents, all one has
to do is to select numerical values for the graph
theoretical parameters R1 and R2. For example, if we
assume R1 ) 1 and R2 ) 1/3, we obtain for the
relative weights of the two Kekulé structures 2/3 and
4/9, or 3:2 in the favor of the Fries Kekulé structure
of naphthalene.

E. On Neglect of Local Aromaticity
We have seen that all the approaches outlined in

this section on local aromaticity, starting with the
work of Polansky and Derflinger and ending with
graph theoretical analysis, point to differentiation of
local ring characteristics that parallel suggestions
implied in Clar’s valence structures. In view of this
overwhelming support for Clar’s empirical model, it
is, to say the least, difficult to understand the
apparent rejection of Clar’s pioneering insights into
the nature of benzenoid compounds by the quantum
chemistry “establishment”. One wonders why skep-
tics preferred to ignore Clar’s work on benzenoid
hydrocarbons and Clar’s interpretation of benzenoid
structures via aromatic π-sextets instead of accepting
the challenge and coming forward with their answers

Figure 97. Clar structures and corresponding graph
theoretical rings indices for benzanthracene and benztet-
racene, based on all Kekulé valence structures and based
only on valence structures with maximal df.

3536 Chemical Reviews, 2003, Vol. 103, No. 9 Randić



to the same problem from “the first principles”, if that
is possible?

Let be reminded of a quotation from Max
Planck:674

... the experimenter cannot afford to close his eyes
to a new discovery, obtained from another point
of view, which will not fit in with his own ideas,
nor must he treat it as unimportant, if not
incorrect...

For this occasion, we should have replaced, as more
appropriate, the term “experimenter” by “theoreti-
cian”. Since nobody has shown that Clar is wrong,
we have to assume that his work was treated as
unimportant s but according to Planck, theoretical
chemists ought to change their attitude toward Clar.
Perhaps some have hoped that, with time, this
π-aromatic “headache” will fade away and disappear,
but they most likely may not have heard a statement
made by Sigmund Freud to the contrary:675

The voice of intellect is a soft one, but it does
not rest until it has gained a hearing. Ulti-
mately, after endless rebuffs, it succeeds. This
is one of the few points in which one may be
optimistic about the future of mankind.

Theoretical chemists, who ought to lead the way
in molecular modeling, have apparently failed to
recognize the significance of Clar’s ideas on aromatic
π-sextets, with a few exceptions. We already mention
M. Orchin and H. H. Jaffe. Another “exception” is the
chemical graph community, which includes A. T.
Balaban, H. Hosoya, N. Trinajstić, D. J. Klein, W. C.
Herndon, I. Gutman, Y. Jiang, S. El-Basil, J. Aihara,
and J. R. Dias s to mention only few authors who
contributed to the topic of aromaticity. Among ex-
perimentalists, there is a particularly sizable group
of German chemists, including M. Zander, who was
a collaborator of Clar. We should mention in particu-
lar W. Schmidt, H. Vogler, J. J. Voitländer, K. P. C.
Vollhardt, and K. Müllen as the leading authorities
on the chemistry of benzenoid and non-benzenoid
hydrocarbons. In the special issue of Chemical Re-
views on aromaticity, several papers, though rather
briefly, mentioned conjugated circuits and Clar struc-
tures: those by Bühl and Hirsch;676 Watson, Fecht-
enkötter, and Müllen;174 Mitchell;677 Gomes and
Mallion;644 Krygowski and Cyrański;678 Katritzky,
Jug, and Oniciu;679 De Proft and Geerlings;680 Schaad
and Hess;542 and Slayden and Liebman.681 In view of
the above quotation from Freud, clearly it is merely
a matter of time until the ideas of Clar will become
familiar to everybody and commonplace in chemistry,
outside of the already indicated theoretical and
experimental circles.

F. Alternative Ring Indices
Besides the already-mentioned ring indices, ad-

ditional ring indices have been proposed for ben-
zenoid (and other) hydrocarbons on the basis of
different considerations. Thus, Kruszewski and Kry-
gowski682 considered an approach based on equaliza-
tion of CC bonds. Krygowski and co-workers682-685

considered the “harmonic oscillator model of aroma-

ticity” (HOMA), where by using statistical analysis
they were able to separate electronic and geometrical
contributions to aromaticity. A close look at HOMA
indices, which were reported for many benzene rings
in the article by Krygowski and Cyrański in the
recent Chemical Reviews issue on aromaticity,678

shows regularities in their relative magnitudes simi-
lar to those displayed by the ring indices of Polansky
and Derflinger outlined in this review. The harmonic
oscillator model is based on bond lengths, but it
differs from other geometry-based indices not only
in selecting a different reference bond length but also
by involving energetic considerations. It is based on
a reference bond using harmonic potential and con-
siders the energy minimum associated with the
compression of CC double bonds and expansion of the
length of a single bond in 1,3-butadiene.

The C index of aromaticity of Randić, Plavšić and
Trinajstić638 can also be viewed as an energetic index.
It measures a portion of the benzene ring resonance
energy that arises from the smallest conjugated
circuits R1. To a degree, the C index parallels the
already described graph theoretical ring index, with
the difference that it uses specific weights for the
contributing R1 conjugated circuits, relative to con-
tributions arising from the larger conjugated circuits,
rather than merely considering the frequency of such
conjugated circuits. In Table 42 we have listed the
ring codes that summarize the count of conjugated
circuits for the individual rings, as well as the
numerical contribution to molecular RE, for the
symmetry-non-equivalent rings of the 30 smaller
benzenoids shown in Figure 53. We included the
results obtained when two different parametrizations
were used for R1, R2, and R3 in order to show that
the relative magnitudes of ring RE are not very
sensitive to the choice of empirical parameters.

Ring indices based on different MO calculations
show some variations. Thus, ring indices based on
SCF MO results, reported by Dewar and Trinajstić,673

point to a slightly increased aromatic character of the
central rings in linear acenes (anthracene, tetracene,
etc.), while the calculations made by Aida and
Hosoya561 using the PPP method (the Pariser-
Pople-Parr SCF calculations41,42) show just the op-
posite trend. The differences between the benzene
character of these rings, which in the graph theoreti-
cal approach as well as in the approach based on the
Pauling bond orders have the same ring values, are
quite small, as can be seen from Figure 98, where
we illustrated the “benzene characters” for the three
non-equivalent benzene rings of pentacene as derived
by different approaches. In order to make compari-
sons easier, all the ring indices have been normalized
so that “the most aromatic ring” gets the ring value
1.000. On the right-hand side of the figure are shown
the normalization factors. As we can see, in this
respect the HMO and the PPP method calculations
reported by Aida and Hosoya561 show remarkable
parallelism with the more recent accurate VB calcu-
lations reported by Li and Jiang. “It is remarkable,”
Aida and Hosoya observed, “how an improved MO
version, PPP as compared to HMO, makes distribu-
tion of relative ring values only slight when PPP is
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compared with purely graph theoretical ring indi-
ces.”561 Aida and Hosoya conclude that, except for
polyacene-like molecules, the graph theoretical ring
values “which can be obtained by hand-calculation,
can be used as a rough estimation” of ring values
based on PPP.

That observation was certainly interesting and
significant, yet for over 20 years it remained unrec-
ognized! What that means, as will be elaborated later
in the section on Clar’s structures, is that the graph
theoretical approach to local characterization of
benzene rings parallels to a great degree computa-
tions based not so much on HMO but on SCF variants
of MO theory, and even more the very accurate VB
calculations made by Jiang and Li. On one hand, this
then means that the empirically justified Clar’s
valence structures of benzenoid hydrocarbons may

have a deep theoretical justification, and that there
may be some quantum chemical basis for graph
theoretical approach, even if we have not yet estab-
lished the connection. On the other hand, it also
illustrates baseless identification of the chemical
graph theory with HMO theory, which was incidental
in that the combinatorial and topological properties
of molecules, when represented by the adjacency
matrix of the molecular graph, become identical to
those obtained with the HMO method. But molecules
continue to have combinatorial and topological prop-
erties, even when described by the PPP method and
other more advanced variants of MO theory.

We should mention that accurate VB calculations
of the molecular resonance energy and the local
aromaticity were recently reported by Li and Jiang686

and Wu and Jiang38 on medium-sized conjugated

Table 42. Ring Codes and Ring RE for Smaller Benzenoid Hydrocarbons (Shown in Figure 53)

molecule ring code ring RE (eV)a ring RE* (eV) b molecule ring code ring RE (eV)a ring RE* (eV) b

1/53 A 2, 0, 0 0.869 0.869 18/53 A 8, 3 0.699 0.675
2/53 A 2, 1, 0 0.657 0.611 B 4, 4, 3 0.433 0.430
3/53 A 2, 1, 1 0.521 0.521 C 2, 3, 4, 2 0.262 0.273

B 2, 2, 0 0.572 0.558 D 10, 1 0.812 0.769
4/53 A 4, 1, 0 0.725 0.744 19/53 A 6, 2, 1 0.645 0.624

B 2, 2, 1 0.480 0.466 B 4, 4, 1 0.507 0.510
5/53 A 2, 1, 1, 1 0.416 0.417 C 2, 2, 3, 2 0.281 0.288

B 2, 2, 1 0.480 0.466 D 4, 3, 2 0.491 0.489
6/53 A 4, 2, 1 0.579 0.581 E 6, 3 0.662 0.644

B 4, 3, 0 0.608 0.602 20/53 A 8, 3, 2 0.607 0.589
C 2, 2, 2 0.359 0.347 B 6, 6, 1 0.523 0.525
D 6, 1, 0 0.754 0.780 C 4, 3, 4, 1 0.355 0.357

7/53 A 6, 2, 0 0.700 0.713 21/53 A 6, 3, 1 0.606 0.591
B 4, 3, 1 0.564 0.539 B 4, 4, 2 0.466 0.470

8/53 A 8, 1, 0 0.770 0.800 C 2, 2, 3, 3 0.253 0.259
B 2, 3, 3, 1 0.326 0.308 22/53 A 10, 4 0.691 0.668

9/53 A 4, 2 0.657 0.661 B 6, 5, 3 0.482 0.482
B 2, 2, 2 0.418 0.405 C 8, 5, 1 0.592 0.582

10/53 A 2, 1, 1, 1, 1 0.347 0.347 D 2, 3, 5, 4 0.213 0.223
B 2, 2, 1 0.400 0.388 23/53 A 20, 4 0.765 0.730
C 2, 2, 2 0.418 0.405 B 8, 9, 6, 1 0.407 0.414

11/53 A 4, 2, 2, 1 0.463 0.456 24/53 A 10, 7, 3 0.536 0.531
B 4, 4, 1 0.507 0.510 B 4, 6, 9, 1 0.293 0.277
C 4, 3, 2 0.491 0.489 25/53 A 18, 2 0.807 0.764
D 2, 2, 2, 2, 1 0.270 0.274 B 4, 6, 7, 3 0.283 0.295
E 8, 1 0.800 0.758 C 16, 4 0.745 0.712

12/53 A 6, 3, 1 0.606 0.591 26/53 A 36, 4 0.807 0.764
B 6, 4 0.620 0.610 B 8, 12, 13, 6, 1 0.280 0.292
C 2, 2, 3, 2, 1 0.253 0.259 C 32, 8 0.745 0.756

13/53 A 10, 2 0.765 0.730 27/53 A 12, 6 0.662 0.644
B 4, 4, 3, 1 0.397 0.402 B 6, 5, 5, 2 0.386 0.388
C 8, 4 0.662 0.644 C 8, 8, 2 0.507 0.510

14/53 A 6, 3, 2 0.560 0.548 28/53 A 24, 11 0.674 0.691
B 6, 5 0.586 0.582 B 12, 12, 11 0.414 0.420
C 4, 3, 3, 1 0.411 0.411 C 10, 11, 12, 2 0.360 0.368
D 6, 4, 1 0.573 0.565 29/53 A 8, 4, 4 0.521 0.724
E 8, 3 0.699 0.675 B 8, 8 0.558 0.559

15/53 A 10, 3 0.725 0.697 C 0 0 0
B 6, 5, 2 0.511 0.510 30/53 A 18, 8, 4 0.601 0.582
C 8, 4, 1 0.618 0.603 B 14, 13, 3 0.523 0.523

16/53 A 8, 4, 1 0.618 0.604 C 8, 7, 9, 6 0.319 0.323
B 8, 5 0.630 0.618 D 18, 10, 2 0.610 0.598
C 2, 3, 4, 3, 1 0.221 0.231 E 8, 9, 9, 4 0.336 0.343
D 12, 1 0.821 0.776 F 2, 3, 6, 10, 9 0.103 0.108

17/53 A 10, 4 0.691 0.668
B 8, 5, 1 0.592 0.582
C 4, 5, 4, 1 0.365 0.374
D 12, 2 0.780 0.742

a R1 ) 0.869 eV, R2 ) 0.247 eV, R3 ) 0.100 eV. b R1* ) 0.815 eV, R2* ) 0.203 eV, R3* ) 0.118 eV.
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hydrocarbons. Jiang et al. defined, similar to Hern-
don-Ellzey’s definition of local aromaticity,165 the
local aromaticity of individual fused rings as the
quotient of the local ring energy to the ground-state
energy of benzene. In practice, this definition reduces
to a ring index that is based on the sum of bond
contributions, analogous to bond orders in MO ap-
proaches. The interpretation of the bond contribu-
tions is somewhat different: Pij, according to May-
nau, Said, and Malrieu,687 represents the probability
of finding a singlet arrangement between atoms i and
j:

where ai
+ and ai are the creation operator of the spin-

down electron and the annihilation operator of the
spin-up electron at site i. This index allows partition-
ing of the VB energy into bond contributions. Jiang
and Li report a good linear regression between the
calculated ground-state Pij and the experimental
bonds, which justifies viewing Pij as a bond index.

XXVI. Ring Currents

A. Ring Currents as Ring Descriptors

In their outstanding article in the recent Chemical
Reviews issue on aromaticity, Gomes and Mallion644

reported on aromaticity as viewed from the model of
ring currents. Modeling magnetic properties and
chemical shifts of benzenoid compounds on the ring

current idea is a very natural “miniature” of the ideas
of the classical physics described by Kirchhoff’s laws.
Haigh and Mallion688 established a theoretical basis
for relating the incidence of relatively “high” and
“low” ring current intensities to the intuitive VB
resonance theory and the “bond fixation” in conju-
gated compounds. This work shows how topological
arguments, combined with ring current ideas, serve
to reinforce Clar’s rules. Here, under “Clar rules”, we
understand the description of benzenoid hydrocar-
bons by qualitative Clar’s valence structures and
accept the consequences of such a characterization
of benzenoid hydrocarbons. In their treatment, Go-
mes and Mallion do not try to devise a ring current
formalism that itself would be based on the VB
resonance theory wave function. Instead, the phi-
losophy that they adopted was (a) to identify and
classify those specific rings in conjugated hydrocar-
bons which have exceptionally high and low ring
currents and then (b) to use graph theoretical argu-
ments that rely only on carbon-carbon connectivity
of conjugated system to show that such rings are
those in which VB computations point to “bond
fixation”. The bond fixation that Haigh and Mallion
refer to concerns CC bonds which in all Kekulé
valence structures have the same bond type, being
either CC single bonds or CC double bonds. Such, for
instance, are the central CC bonds in perylene that
connect two naphthalene fragments and several
central bonds in zethrene. Such bonds are also known
as the essentially single and the essentially double
CC bonds.43

Let us compare the results of ring current calcula-
tions for pyracylene and its two isomers: azuleno-
pentalene and dibenzo[cd,gh]pentalene, the three
structures shown in Figure 99. As discussed by
Gomes and Mallion,644 there is some disagreement
in the interpretation of the results reported by these
authors and by Anusooya and collaborators,689 who

Figure 98. “Benzene characters” for the three non-
equivalent benzene rings of pentacene as derived from
different theoretical models.

Pij ) 〈Ψ | 1/2(ai
+aj

+ - ai
+aj

+) (ajai - ajai) | Ψ〉

Figure 99. Decomposition of Kekulé valence structures
for pyracylene and its isomers azulenopentalene and
dibenzo[cd,gh]pentalene in 4n + 2 and 4n conjugated cir-
cuits.
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made more recent calculations on these systems.
According to Gomes and Mallion,644

... (Anusooya and collaborators) claimed that
“the ring current results established that pyra-
cylene can be viewed as 4n annulene system with
internal vynil cross-links”. However, the present
authors believe that the situation is by no means
that simple, and although Anusooya et al.689

made reference to our work of 20 or more years
ago,642,690 there is no mention on their part of our
detailed s and by no means straightforward s
findings in ref [690] that not all three of pyra-
cylene and its two isomers may be regarded as
good models for a “perturbed[4n]-annulene”
(n)3): dibenzo[cd,gh]pentalene is predicted in
ref. [690] to be “very paramagnetic,” while pyra-
cylene and azulenopentalene “are marginally
diamagnetic and marginally paramagnetic, re-
spectively.” Accordingly, of pyracylene and its
two isomers, dibenzo[cd,gh]pentalene is the one
that640 “would apparently serve best as perturbed
[12]-annulene in terms of the model proposed by
Trost et al.640,641 (Reference numbers have been
changed to correspond to the numbering in the
current review.)

I would like to add that I tend to fully agree here
with the statement of Gomes and Mallion, but that
is not the reason for including the above lengthy
quotation on ring calculations on pyracylene and its
two isomers. The main reason for a discussion of ring
properties of these molecules is to contrast the
“detailed s and by no means straightforward s
findings. that not all three of pyracylene and its two
isomers may be regarded as good models for a
‘perturbed[4n]-annulene’ ” of Gomes and Mallion with
the same conclusion that follow straightforwardly
from the model of conjugated circuits. In Figure 99
we present Kekulé valence structures for pyracylene
and its two isomers, azuleneopentalene and dibenzo-
[cd,gh]pentalene. Under each valence structure is
shown its decomposition in conjugated circuits, where
R1, R2, and R3 are 4n + 2 conjugated circuits for n )
1, 2, and 3, respectively, and Q2 and Q3 are 4n
conjugated circuits for n ) 2 and 3. From the
enumeration of conjugated circuits, we can obtain the
expressions for their corresponding RE (vide infra).
It is easy to verify that RE values of the three isomers
are different:

Recall that 4n + 2 conjugated circuits make positive
contributions toward RE and molecular stability,
with R1 > R2 > R3, while the opposite is the case with
4n conjugated circuits, with |Q1| > |Q2| > |Q3|. From
the above, we immediately can see, even without
resorting to numerical calculations, that among the
three isomers pyracylene will have the largest RE,
and that its Kekulé valence structures have the
conjugated circuits with the largest 4n + 2 compo-

nents. Hence, it may be expected that pyracylene
shows diamagnetic behavior. This may be “marginal”,
as stated by Gomes and Mallion, because of the
presence of a number of anti-aromatic Q3 conjugated
circuits. On the other hand, in azulenopentalene, the
contributions from the 4n + 2 conjugated circuits
have visibly decreased. On one side, there are no
contributing R1 conjugated circuits, which as a con-
sequence means a considerable reduction of the
molecular RE. At the same time, the influence of 4n
conjugated circuits is increased by the presence of the
smaller “anti-aromatic” Q2 conjugated circuits. Thus,
the conclusion that this isomer is marginally para-
magnetic appears reasonable. Finally, we see that
dibenzo[cd,gh]pentalene is devoid of any 4n + 2
conjugated circuits, and thus it has only anti-
aromatic conjugated circuits that will be associated
with strong paramagnetism. Moreover, we can see
from the two Kekulé valence structures that in
dibenzo[cd,gh]pentalene the central CC bond is es-
sentially double and the four connecting CC bonds
are essentially single bonds. Thus, there is no cou-
pling between the peripheral 12-π-electron system
and the central 2 π-electrons. Dibenzo[cd,gh]pent-
alene represents prima facie case for weakly “per-
turbed [4n]annulene”.

It is fitting to conclude this brief outline of the
differences between pyracylene and its isomers by
pointing out the potential of the conjugated circuits
model to characterize conjugated benzenoid hydro-
carbons. The model of conjugated circuits offers
insights into structural features of conjugated sys-
tems, including some magnetic properties that oth-
erwise may require rather sophisticated and even
tedious computations. At the same time, one should
point out that the conjugated circuits method well
reflects molecular features connected with the mo-
lecular resonance energy and molecular aromaticity.
It shows that molecular RE is an additive quantity
in terms of conjugated circuits, and it allows one to
classify conjugated hydrocarbons as fully aromatic,
aromatic, less aromatic, or anti-aromatic. However,
the conjugated circuits model is not a panacea: it is
not a substitute for quantum chemical arguments
and other theoretical studies of molecules. Chemical
graph theory helps to process available data, but it
does not, as is the case with the quantum chemistry,
generate novel data. Hence, graph theory cannot help
with questions concerning molecular geometry, mo-
lecular spectra, and molecular interactions. Graph
theory cannot produce RE for anthracene and phenan-
threne, as quantum chemistry can, but given these
values it can forcibly argue and demonstrate why the
RE of phenanthrene is greater than that of an-
thracene; such questions are beyond quantum chem-
istry, in the sense that they could not be obtained
from the first principles of quantum theory.

B. Nuclear-Independent Chemical Shifts (NICS)
An alternative characterization of the local features

of conjugated polycyclic hydrocarbons in terms of ring
currents involves computation of the effect of ring
currents on chemical shifts. It was suggested by
Schleyer and collaborators691 that the absolute mag-

pyracylene (4R1 + 2R2 + 6Q3)/4 marginally
diamagnetic

azulenopentalene (3R2 + R3 + 6Q2 + 2Q3)/4 marginally
paramagnetic

dibenzo[cd,gh]-
pentalene

(2Q2)/2 strongly
paramagnetic
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netic shielding computed at the ring center be viewed
as a local index to estimate the degree of aromaticity
and anti-aromaticity of a molecule. According to
Schleyer, nuclear-independent chemical shift (NICS)
is defined as the negative of the absolute magnetic
shielding computed at the center of a ring and/or 1
Å above the center of the ring. This then gives rise
to NICS(0) and NICS(1) parameters, respectively.

Gomes and Mallion644 reproduced the relative ring
currents and the relative NICS values for several
conjugated hydrocarbons in their article, “Aromatic-
ity and Ring Currents”, where a detailed discussion
of nuclear-independent chemical shifts is presented.
There is an overall parallelism between the results
of ring currents and chemical shifts at the center of
a ring of conjugated hydrocarbons. Thus, the central
rings in phenanthrene and triphenylene have sub-
stantially smaller ring currents and relative NICS
in comparison with the peripheral rings in the same
molecules. The same is true for the seven-member
ring of azulene when compared to the five-member
ring. On the other hand, as could have been expected,
both the five-member ring in pyracylene and the four-
member ring in biphenylene show strong paratrop-
icity (i.e., negative ring current and negative NICS).

There is much more that could be written on
nuclear-independent chemical shifts that is relevant
for discussion of local aromaticity and deserves more
attention, but there is no need to duplicate what has
already been well presented elsewhere. We direct
interested readers to the article by Gomes and
Mallion644 and the references cited therein for more
information.

C. A Graph Theoretical View on Ring Currents
We will end this discussion of ring currents and

chemical shifts by reviewing data on ring currents
for a dozen isomers of pentacene C22H14, illustrated
in Figure 100. The concept of ring currents, also
considered by Pauling692 over 65 years ago, is of
interest for computations of chemical shifts in NMR
spectroscopy. Ring currents are not observables;
nevertheless, they proved useful for discussing mag-
netic properties of conjugated hydrocarbons. Several
publications642,688,692-698 reported the numerical val-

ues of ring currents for well over 300 rings in some
60 benzenoid systems. Although the supply of data
appears satisfactory, it is worth observing how little
was deduced from the available data concerning the
regularities of ring currents for individual rings.
Thus, for instance, all that Memory could conclude
was “... in general, the ratios of the individual ring
currents in the pentacyclic hydrocarbons to the ben-
zene ring current do not differ drastically from
unity.” 694 Haigh and Mallion similarly conclude “... in
polycyclic molecules, the ring currents are, in general,
greater than the ring currents in benzene, but fall
rapidly off with increase in condensation.” 688 Perhaps
one of the reasons that not much could be said at that
time was a lack of adequate structural vocabulary
that would allow more precise descriptions of differ-
ent rings in different molecular environments. We
will see that, with the help of graph theory and the
concept of conjugated circuits in particular, consider-
ably more could be said about the very same com-
putational results. Aihara, who examined the dia-
magnetic susceptibility due to ring currents using
graph theoretical terms, found that the susceptibility
induced in any of the π-electron rings is roughly
proportional to the contribution of the ring to the
resonance energy, multiplied by a factor which
depends on the ring area.699

In Table 43 we list the ring codes for the individual
rings of the cata-condensed pentacyclic benzenoids
shown in Figure 100. The entries in each code
enumerate conjugated rings of different size in all
Kekulé valence structures. Thus, for instance, the
code 2,2,2 for the central ring of pentacene means
that in the six Kekulé structures of pentacene, the
central benzene ring appears twice as the conjugated
circuit R1, twice as a part of conjugated circuits R2,
and twice as a part of conjugated circuit R3. We are
not counting larger conjugated circuits R4 and R5,
which also may be present in some Kekulé valence
structures of the benzenoid hydrocarbons considered.
A look at Table 43 immediately shows a number of
interesting regularities in the data s well beyond
“ring currents do not differ drastically from unity”
and “... the ring currents are, in general, greater than
ring currents in benzene.” The following are some of

Figure 100. Pentacene isomers with labeled symmetry-non-equivalent benzene rings.
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the observations that follow after examination of
Figure 100:508

(1) Within a molecule, symmetry-non-equivalent rings
having the same ring code show the same ring
current.

(2) Benzene rings in different molecules having the same
code show the same ring current.

(3) Ring currents in rings with predominant contribu-
tions of R1 approach the value 1.000.

(4) The smallest ring currents belong to rings with low
R1 content and “long” ring code (i.e., the presence
of many large conjugated circuits).

Because individual rings are in different local envi-
ronments, their ring codes depend much on the
immediate neighborhood. The ring codes of Table 43
allow one to group rings of similar environments and
recognize their common characterization. By looking
at the table more closely, we can see additional
regularities, such as an increase of the ring current
in linearly fused rings as we move from the periphery
toward the center. Similarly, we see that the “empty”
rings of the Clar structures for the benzenoids
considered have unusually small ring currents. Fi-
nally, the rings belonging to the aromatic π-sextet
have larger ring currents than the adjacent rings,
having fixed CdC bonds in Clar’s structure of a
molecule. Some points remain yet to be better un-
derstood. For instance, why does the central ring in
picene have a ring current similar in magnitude to
that of the terminal rings, while in 1,2:5,6-dibenzan-
thracene and 1,2:7,8-dibenzanthracene (the com-
pounds 3/100 and 4/100) the central ring has a visibly
larger ring current?

It is clear from Table 43 that conjugated circuits
and Clar structures play some role here in determin-
ing the relative magnitudes of the ring currents, as
it is not accidental that benzene rings with the same
code, i.e., the same composition of conjugated circuits,
have the same ring currents. Be that as it may, it is
remarkable that the simple graph theoretical ap-
proach to benzenoid hydrocarbons already provides
important guidance. We can conclude from the above
observations that although ring currents of benzenoid
hydrocarbons were calculated independently for each
ring and for each molecule, the ring currents are
transferable, at least within cata-benzenoid hydro-
carbons between rings having the same code. Caution
is needed if one is to extend such considerations to
peri-condensed systems, because conjugated circuits
R3, as discussed by Klein and collaborators,533 may
belong to circuits of different shapes, represented by
the periphery of anthracene, phenanthrene, and
pyrene. Each such R3 conjugated circuit is likely to
make a different contribution to ring current calcula-
tions as well as to other molecular properties. In
particular, this will be true for conjugated circuits
that encompass different areas, such as the 14
π-conjugated circuits along the perimeter of an-
thracene or phenanthrene and the 14 π-conjugated
circuits along the perimeter of pyrene.

D. Conjugated Circuits Currents
In discussing conjugated circuits in conjugated

hydrocarbons, particularly pyracylene, we already
hinted in Figure 84 at a possibility that the model of
conjugated circuits gives insights into variations in
chemical shifts resulting from the diamagnetic and
the paramagnetic contributions of ring currents. We
will present here three additional examples that
illustrate a connection between the ring current
model and the model of conjugaed circuits. As we
already know, non-benzenoid hydrocarbons may have
4n + 2 and 4n conjugated circuits. We will now
assume that an outside magnetic field will induce in
4n + 2 conjugated circuits ring currents along the CC
bonds of the conjugated circuits in a mathematically
positive direction (that is, anti-clockwise). As a
consequence, hydrogen atoms in the vicinity will
experience diamagnetic shifts. On the other hand, an
outside magnetic field will induce in 4n conjugated
circuits ring currents along the CC bonds of the
conjugated circuits in a mathematically negative
direction (that is, clockwise). As a consequence,
hydrogen atoms in the vicinity will experience para-
magnetic shifts.

At the top left in Figure 101 we illustrate one of
the four Kekulé valence structures for one of the
isomers of pyracylene. We decomposed this valence
structure into its conjugated circuits R2, R2, and Q3,
outlined in the center of the top row over the
molecular skeleton as the peripheries of azulene
(twice) and the periphery of the molecule as a whole.
We assume in this qualitative representation that the
two R2 conjugated circuits will contribute a current
of strength +1 in the positive (anti-clockwise) sense
to each bond of the azulene periphery. On the other
hand, the bonds that belong to the molecular periph-

Table 43. Ring Codes for Individual Rings of the
Pentacyclic Benzenoids Shown in Figure 100a

molecule ring ring code
ring

current

1/100 pentacene A 2, 1, 1, 1, 1 1.06
B 2, 2, 1, 1 1.30
C 2, 2, 2 1.35

2/100 benzanthracene A 4, 2, 2, 1 1.09
B 4, 4, 1 1.32
C 4, 3, 2 1.35
D 2, 2, 2, 2, 1 0.85
E 8, 1 1.11

3/100 dibenzo[a,h]anthracene A 10, 2 1.14
B 4, 4, 3, 1 0.94
C 8, 4 1.29

5/100 picene A 10, 3 1.15
B 6, 5, 2 1.06
C 8, 4, 1 1.16

7/100 dibenz[b,i]phenanthrene A 6, 3, 2 1.12
B 6, 5 1.30
C 4, 3, 3, 1 0.99
D 6, 4, 1 1.08
E 8, 3 1.15

10/100 pentaphene A 6, 3, 1 1.11
B 6, 4 1.23
C 2, 2, 3, 2, 1 0.78

11/100 dibenzo[a,c]anthracene A 8, 4, 1 1.12
B 8, 5 1.21
C 2, 3, 4, 3, 1 0.65
D 12, 1 1.08

12/100 dibenzo[a,c]phenanthrene A 12, 2 1.13
B 4, 5, 4, 1 0.85
C 8, 5, 1 1.09
D 10, 4 1.10

a For isoconjugate structures (3, 4), (5, 8, 9), (6, 7) only one
structure is listed.
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ery similarly contribute to ring currents, but in the
opposite direction. As a result, for some bonds the
currents will cancel and for some bonds they will add.
In the right-most diagram in the top row of Figure
101, we show the result of the superposition of the
three rings currents arising from conjugated circuits
R2, R2, and Q3. The directions of the bond contribu-
tions have to be inferred from the diagram. As we
can see, the particular Kekulé valence structure of
the isomer of pyracylene considered has a diamag-
netic ring current in the seven-member ring and a
paramagnetic ring current in the bottom five-member
carbon ring. In the lower part of Figure 101, we first
show the amplitudes of all bond contributions to all
ring currents from all conjugated circuits in all
Kekulé valence structures of pyracylene. The result-
ant bond currents can be shown to be a superposition
of a diamagnetic current involving a seven-member
ring and two adjacent five-member rings (an 11
carbon atom center) and a paramagnetic current
embracing the periphery of the three five-member
rings (a 9 carbon atom circuit).

In Figure 102 we show the results of a similar
analysis of conjugated circuits in azupyrene and one
of its isomers. Azupyrene has four Kekulé valence
structures, which contribute eight R2, two R3, and two
Q3 conjugated circuits. It is then to be expected that
the molecule will have dominant diamagnetic ring
currents with minor contributions from paramagnetic

currents. As we can see from Figure 102, bond
current contributions split into contributions arising
from the strong diamagnetic current along the mo-
lecular periphery and a weak paramagnetic current
along the central heptalene periphery. The decom-
position of the bond current contributions for the
isomer of azupyrene is shown in the lower part of
Figure 102. This molecule also has 4n + 2 and 4n
contributions as follows: six R2, two R3, two Q2, and
two Q3. In this case, the presence of 4n conjugated
circuits is more pronounced. Nevertheless, as we can
see from Figure 102, the decomposition of the overall
contributing conjugated circuits results in only dia-
magnetic contributions along the molecular periphery
(a 14-member circuit) and along the periphery of the
central azulene fragment (10-member circuit). Thus,
interestingly, the presence of the 4n conjugated
circuits in this molecule has been completely canceled
by contributions from the 4n + 2 conjugated circuits.
The intensity of the diamagnetic ring currents in this
isomer of azulene, though both components are
diamagnetic, is smaller than the combined contribu-
tions of the diamagnetic and paramagnetic ring
currents in azupyrene.

Let us end this discussion of ring currents by
quoting the concluding statements from a paper in
which the local aromatic properties of benzenoid
hydrocarbons were discussed, as it well clarifies the
distinction between the quantum chemical calcula-
tions of ring currents and the graph theoretical
rationale for results so obtained on the basis of the
count of conjugated circuits:508

The novel viewing of rings and ring contribu-
tions has still not resolved the issue of the
relative magnitudes of ring currents in ben-
zenoid systems. The problem has been challenge
for a decade and more to quantum chemists and
continue to be elusive. We are not surprised for
the past lack of understanding of the relative
magnitudes for ring currents. Strictly speaking
the task is outside the usual scope of applied
quantum mechanics since it is conceptual not
computational. The concept of conjugated cir-
cuits definitely offered some guidance. To find
explanation fully one needs more numerical
results on additional rings and compounds. This
part has to come from quantum mechanical
calculations, it will not clarify the present dif-
ficulties, but may pave way to subsequent graph
theoretical efforts and help in recognizing im-
portant factors. Graph theory normally does not
produce new data, but hopefully can relate
meaningfully the available data with a help of
appropriate graph invariants. Combined quan-
tum mechanical calculations and graph theo-
retical considerations are likely to further clarify
the problem and possibly offer a complete un-
derstanding. The situation is a good illustration
of the different character of the two important
theoretical tools: quantum mechanics and graph
theory.

Figure 101. (Top) Decomposition of one of the Kekulé
structures of azulenopentalene, for which schematic ring
currents associated with 4n + 2 and 4n conjugated circuits
are shown. (Bottom) Resulting superposition based on the
four Kekulé structures of azulenopentalene.

Figure 102. Ring currents resulting from the superposi-
tion of the schematic “conjugated circuit ring currents”
arising from all Kekulé structures for azupyrene (top) and
its isomer (bottom).
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XXVII. Graph Theoretical Ring Resonance
Energies

From the topics discussed above, we have seen that
the local aromaticity index is given as a quotient in
which the numerator enumerates conjugated circuits
R1 for individual rings in benzenoid hydrocarbons
and the denominator is K, the number of Kekulé
structures. A more complete description based on the
conjugated circuits model considers ring codes de-
rived from enumeration of all conjugated circuits in
all Kekulé valence structures. In Tables 42 and 43
we listed ring codes for a number of smaller ben-
zenoids illustrated in Figures 53 and 100, respec-
tively. Immediately we see that there is a variety of
ring codes: on one end the codes that show a
dominance of the R1 contribution, and on the other
end the codes that show a lack of dominance of the
R1 contributions. When one compares ring codes with
Clar’s π-sextet formulas, one can notice that rings
with the dominant R1 contribution correspond to the
rings with π-sextets, while the rings with comparable
R1 and R2 contributions belong to the “migrating”
sextets, and finally the rings that have but a minor
R1 contribution correspond to the “empty” rings.

If we multiply the triple entries of a ring code by
the numerical parameters for R1, R2, and R3, respec-
tively, we obtain the ring resonance energy that is
listed in the last column of Table 42. The two
numerical values shown in the table were based on
alternative choices for the parameters R1, R2, and R3
as listed at the bottom of the table. The first set is
the initial parametrization, as reported in ref 51,
based on solution of the set of linear equations for
benzene, naphthalene, and anthracene. The second
set is based on the least-squares fitting of the
expressions for RE for a collection of smaller ben-
zenoid hydrocarbons. Clearly, by adding the RE
contributions of all rings, we obtain the molecular
RE, because the entries in the codes are the coef-
ficients for the expression of molecular RE considered
earlier. The derived ring RE can be viewed as an
alternative (energetic) ring index. The ring RE merely
represents partitioning of molecular RE into ring
contributions, just as the R1, R2, and R3 contributions
to individual Kekulé valence structures represent
partitioning of RE into Kekulé valence structure
contributions. While such results are of considerable
interest, as they clearly show the variation of local
aromatic character in a benzenoid hydrocarbon, the
practical importance of ring RE emerges when one
wishes to calculate the RE of large benzenoids. Such
molecules as a rule have large numbers of Kekulé
valence structures, and a direct use of Kekulé valence
structures for counting conjugated circuits becomes
impractical. As we will see later on, for the case of
giant benzenoids, one can obtain molecular RE for
such compounds much more easily by calculating the
ring RE and adding their contributions than by
trying to calculate the contributions of various Kekulé
valence structures.

XXVIII. The Most Aromatic Aromatic Compounds
That benzenoid hydrocarbons are aromatic is gen-

erally accepted, but we owe to Clar the enlightenment

that among “equals” some are more “equal”, that
among aromatic benzenoids some are more aromatic
than others. Clar referred to these 6n π-sextet
electron systems as “fully aromatic”. We will briefly
examine the local aromatic properties of these, “the
most aromatic aromatic compounds”. In these ben-
zenoids, the π-sextets can be distributed so that a
benzene ring is represented either as an aromatic
π-sextet or as an “empty” ring. The corresponding
Clar’s structure having n π-sextets requires a super-
position of 2n Kekulé valence structures, because each
aromatic sextet is a result of superposition of two
Kekulé valence structures.

A. Fully Benzenoid Hydrocarbons

In Figure 103 we show Clar structures for smaller
“fully benzenoid” hydrocarbons in which we have
labeled symmetry-non-equivalent π-sextet rings by
capital letters and “empty” rings by small letters. In
the upper part of Table 44 are the ring codes and the
ring RE for the symmetry-non-equivalent rings’
π-sextets listed for half a dozen of the “fully ben-
zenoid” hydrocarbons shown in Figure 103, while in
the lower part of the table are listed the codes and
ring RE of the “empty” rings of the same benzenoids.
As one can see from Table 44, the π-sextets at the
molecular periphery have the largest ring RE, while
the π-sextets situated at the inside of the molecular
skeleton have the smallest ring RE. It appears that

Figure 103. Clar structures for smaller fully benzenoid
hydrocarbons, with symmetry-non-equivalent π-sextet rings
labeled with capital letters.
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minor variations in the ring RE of π-sextet rings
depend on the number of CC bonds on the molecular
periphery. In Figure 104 we collect the ring RE
values for the π-sextets for the smaller benzenoids
of Table 44 and refs 507 and 508 by grouping the
results for rings in similar environments in the same
column. In refs 507 and 508, a few entries were
mislabeled or were in error and have been corrected
here. As we can see from Figure 104, the ring RE
belonging to the aromatic π-sextet is quite sensitive
to the immediate ring environment. Rings with fewer
peripheral CC bonds show somewhat reduced ring
RE. Similar regularities have been found also for
“empty” rings. The apparent constancy of the ring
RE for rings in similar topological environments

allows one to estimate the RE of larger “fully ben-
zenoid” systems directly by inspecting individual ring
environments, rather than following the complete
analysis of their conjugated circuits.

B. Giant Benzenoids
Big is Beautiful.

M. D. Watson, A. Fechtenkötter,
and K. Müllen174

With the preparation of several extremely large
polycyclic aromatic hydrocarbons derived from hexa-
peri-benzocoronene, referred to as “superbenzene”,
Klaus Müllen and co-workers174-177 opened a new
field of chemistry: the chemistry of giant benzenoid

Table 44. Ring Codes and Ring RE for π-Sextet Rings and the “Empty” Rings of Smaller Fully Benzenoid
Hydrocarbons (Shown in Figure 103)

molecule K ring code RE (eV)a RE* (eV)b 1,1/3,1/9

π-Sextet Rings
1/103 triphenylene 9 A 8, 1, 0 0.758 0.800 0.926
2/103 dibenzopyrene 20 A 18, 2, 0 0.764 0.807 0.933

B 16, 4, 0 0.712 0.744 0.867
3/103 tetrabenzanthracene 40 A 36, 4, 0 0.764 0.807 0.933

B 32, 8, 0 0.712 0.744 0.867
4/103 tribenzoperylene 45 A 40, 5, 0 0.758 0.800 0.926

B 36, 9, 0 0.712 0.744 0.867
C 32, 12, 1 0.663 0.686 0.802

5/103 tribenzocoronene 103 A 90, 13, 0 0.750 0.790 0.916
B 72, 28, 3 0.655 0.677 0.793

6/103 hexabenzocoronene 250 A 200, 50, 0 0.712 0.745 0.867
B 128, 96, 24 0.545 0.549 0.651

7/103 tetrabenzanthanthrene 100 A 90, 10, 0 0.764 0.807 0.933
B 80, 20, 0 0.712 0.745 0.867
B′ 80, 20, 0 0.712 0.745 0.867
E 64, 32, 4 0.623 0.639 0.751

8/103 tetrabenzoheptacene 198 A 178, 20, 0 0.763 0.806 0.933
B 160, 38, 0 0.716 0.750 0.872
C 162, 36, 0 0.722 0.756 0.879

9/103 tetrabenzovalene 520 A 460, 56, 4 0.752 0.796 0.921
D 360, 140, 20 0.684 0.672 0.786
E 300, 168, 32 0.575 0.587 0.691

10/103 dibenzophenanthropentaphene 101 A 90, 11, 0 0.759 0.801 0.927
B 80, 21, 0 0.708 0.740 0.861
D 72, 27, 2 0.664 0.687 0.804

11/103 tetrabenzoterrylene 227 A 202, 25, 0 0.759 0.800 0.927
B 180, 47, 0 0.709 0.740 0.862
D 160, 62, 5 0.660 0.650 0.798
D′ 162, 61, 4 0.665 0.688 0.805

“Empty” Rings
1/103 triphenylene a 2, 5, 1 0.362 0.341 0.420
2/103 dibenzopyrene a 4, 6, 7 0.295 0.283 0.339
3/103 tetrabenzanthracene a 8, 12, 12 0.289 0.278 0.333
4/103 tribenzoperylene a 10, 14, 15 0.314 0.303 0.363

b 8, 8, 12 0.230 0.225 0.267
5/103 tribenzocoronene a 26, 37, 32 0.351 0.339 0.407

b 18, 27, 48 0.277 0.263 0.314
6/103 hexabenzocoronene a 50, 58, 41 0.252 0.248 0.296
7/103 tetrabenzanthanthrene a 20, 28, 32 0.285 0.275 0.329

b 20, 28, 30 0.283 0.273 0.327
8/103 tetrabenzoheptacene a 40, 60, 69 0.297 0.285 0.342

b 36, 54, 72 0.273 0.262 0.313
9/103 tetrabenzovalene a 112, 156, 156 0.302 0.291 0.349

b 112, 148, 204 0.308 0.297 0.354
10/103 dibenzophenanthropentaphene a 22, 31, 29 0.304 0.294 0.352

b 20, 28, 35 0.289 0.275 0.329
11/103 tetrabenzoterrylene a 50, 70, 76 0.312 0.301 0.360

b 44, 62, 79 0.282 0.271 0.324
c 50, 85, 76 0.332 0.317 0.382

a R1 ) 0.815 eV, R2 ) 0.302 eV, R3 ) 0.118. b R1* ) 0.869 eV, R2* ) 0.247 eV, R3* ) 0.100 eV.
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hydrocarbons. In Figure 12 we illustrated several of
the giant benzenoids described Müllen et al. Indeed,
these giant benzenoids are big, are beautiful, and are
exciting! First, observe that all hitherto reported
giant benzenoids, the largest of which has 37 π-sex-
tets (and 54 “empty” rings), are “fully benzenoid”
hydrocarbons. As Müllen et al. report, all these
hydrocarbons show unusual stability, thus fully sup-
porting Clar’s 6n π-electron rule. By having a large
number of symmetry-non-equivalent rings, such sys-
tems offer insights into variations of local aromaticity
with ring environment. Randić and Guo509,700-702

examined several smaller “giants” and found, as
might have been expected, that as one moves deeper
into the interior of molecules, the differences between
the π-sextet rings and the “empty” rings gradually
decrease. The overall situation can be characterized
by the word “regression”, widely used in statistical
analysis of data for a historical reason.703 Hence, the
interior π-sextet rings will still have a larger ring RE
than the “empty” benzene rings, but not as large as
the peripheral π-sextet rings. At the same time, the
“empty” rings will continue to have smaller RE, but
the benzene rings that are more removed from the
molecular periphery will have larger ring RE than
the benzene rings that are closer to the molecular
periphery.

In Figure 105 we illustrate ring RE for “superphe-
nalene”, a giant benzenoid built from 34 fused
benzene rings and having over half a million Kekulé
valence structures.509 In Table 45 we show the
expressions for ring RE for individual benzene rings
of “superphenalene”. The upper part of Table 45 gives
ring RE for rings carrying the π-aromatic sextet,
while the lower part of the table gives ring RE for
the so-called “empty” rings. We have labeled the
π-sextet rings alphabetically using capital letters,
starting with the ring with the highest RE, and
similarly we have labeled the “empty” rings alpha-
betically using lowercase letters, starting with the
ring having the smallest RE. As we can see from
Figure 105, π-sextet rings gradually decrease their
contributions to the molecular RE as we move toward
the center of the molecule, while the contributions

from “empty” rings increase as we move toward the
center. This suggests that in the interior of graphite
the distinction between π-sextet rings and “empty”
rings will eventually disappear. However, judging
from the differences between the aromatic π-sextet
rings and the “empty” rings observed for superphe-
nalene, the giant benzenoids so far prepared are still
by far too small to suggest that we are close to
approaching graphite structure in the interior parts
of these molecules.

As the number of Kekulé valence structures of
giant benzenoids increases fast with their size and

Figure 104. Summary of ring RE for π-sextets found in
the smaller benzenoids shown in Figure 103.

Figure 105. Variations of ring RE for the rings with
π-aromatic sextets and the “empty” rings of “super-phe-
nalene”.

Table 45. Expressions for the Ring RE for Giant
“Superphenalene” (Shown in Figure 105)

ring ring RE expression

π-Sextet Rings
A (432 000R1 + 108 000R2)/540 000
B (426 000R1 + 108 500R2 + 5375R3)/540 000
C (322 000R1 + 171 500R2 + 43 000R3)/540 000
D (243 000R1 + 201 000R2 + R3)/540 000
E (257 600R1 + 201 600R2 + 68 700R3)/540 000

“Empty” Rings
a (109 000R1 + 132 775R2 + 146 825R3)/540 000
b (108 000R1 + 140 200R2 + 159 750R3)/540 000
c (127 000R1 + 139 825R2 + 183 450R3)/540 000

ring
ring RE expression

(numerical)
ring RE

(eV)a
ring RE*

(eV)b

π-Sextet Rings
A 0.8000R1 + 0.2000R2 0.712 0.745
B 0.7889R1 + 0.2009R2 + 0.0200R3 0.706 0.737
C 0.5963R1 + 0.3176R2 + 0.0796R3 0.606 0.605
D 0.4500R1 + 0.3722R2 + R3

E 0.4700R1 + 0.3733R2 + 0.1272R3 0.511 0.513

“Empty” Rings
a 0.2019R1 + 0.2459R2 + 0.2719R3 0.269 0.263
b 0.2000R1 + 0.2596R2 + 0.2958R3 0.287 0.268
c 0.2352R1 + 0.2589R2 + 0.3397R3 0.310 0.302

a R1 ) 0.815 eV, R2 ) 0.302 eV, R3 ) 0.118 eV. b R1* ) 0.869
eV, R2* ) 0.247 eV, R3* ) 0.100 eV.
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is becoming staggering, we should remember that
among so many Kekulé valence structures there will
be considerable variation in their importance with
respect to making contributions to molecular RE.
Recollect the five Kekulé structures of kekulene
illustrated in Figure 65, each having a different
innate degree of freedom. Hence, we should pay more
attention to the hitherto not much considered “innate
degree of freedom” of Kekulé valence structures. As
we will see later when describing Clar’s valence
structures of benzenoid hydrocarbons, it follows that
only Kekulé valence structures of the maximal degree
of freedom are important for construction of Clar
structures. For the fully benzenoid systems having
n π-sextets, the number of Kekulé valence structures
of the maximal degree of freedom is given by 2n.
Hence, in the case of superphenalene, of over half a
million Kekulé valence structures, only 65 536 (that
is, about 12%) play important roles in the represen-
tation of this giant hydrocarbon by Clar’s formula.

XXIX. Clar’s Aromatic Sextets

There is nothing more exciting than slightly
unreasonable prediction.

R. Hoffmann704

One can view various molecular models as “predic-
tions” of molecular structure, a theoretical prediction
to be more precise. Such are Kekulé formulas for
benzene, Doering’s structure of bullvalene,705,706 that
was soon synthesized by Schröder and co-work-
ers,707,708 and Harry Kroto et al.’s spherical structure
for buckminsterfullerene,153 all exciting in their own
right. Clar’s aromatic sextet could be added to this
class of “slightly unreasonable predictions” with the
distinction that, while Kekulé’s, Doering’s, and Kro-
to’s structures were recognized and immediately
accepted by all chemists, Clar’s model has been
appreciated, enthusiastically I may add, by only a
distinguished minority. So, what is so “unreasonable”
about Clar’s aromatic sextet that it continues not to
be taken “too seriously” by so many chemists, theo-
retical chemists included? First, Clar speaks of
partial “localization” of π-electrons, while it is fash-
ionable to speak of total “delocalization” of π-elec-
trons. Then Clar uses a rather simple molecular
model, while fashionable molecular models are based
on highly intricate numerical characterization, on
molecular orbitals calculated often using double-digit
precision. In addition, Clar’s model is of empirical
origin and lacks apparent theoretical (mathematical)
formulation, which in the eyes (incorrectly) of some
reduces the merits of the model. While one can
understand, on one hand, that the reasons listed
above may have contributed to the relative obscurity
of Clar’s model in some circles, on the other hand one
cannot understand why Clar’s 6n π-electron rule and
Clar’s postulate, that structures for which one cannot
draw Kekulé valence structures cannot exist, have
not attracted due attention, particularly from theo-
retical circles.

Be that as it may, in this section we will first
outline Clar’s approach to benzenoid hydrocarbons

and then offer a theoretical basis for Clar’s model.
Finally we will show that Clar’s model can be fully
justified by quantum chemical calculations.

A. Geometrical Definition of Clar’s Valence
Formulas

Clar’s valence formulas, illustrated in Figures 103,
106, and 107 on a selection of smaller benzenoids,
can be described as formulas in which π-electrons,
whenever possible, tend to be localized in π-sextets
within a single benzene ring. The lovely booklet by
Clar,49 The Aromatic Sextet, offers numerous argu-
ments and numerous illustrations of valence struc-
tures with localized π-sextets and the “migrating”
π-sextets. One can define Clar’s valence structure of
a benzenoid as follows:

Figure 106. Smaller benzenoid hydrocarbons having a
single Clar structure.

Figure 107. Smaller benzenoid hydrocarbons having
several Clar valence structures.
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Definition: Inscribe in non-adjacent benzene rings
of a polycyclic benzenoid hydrocarbon the maximal
number of circles (π-sextets) so that for bonds not
involved in π-sextets one can complete the Kekulé
valence structure.

We may refer to this definition as “geometrical”,
in view of the fact that the rules allow one to draw
Clar’s structures on a piece of paper. In Figure 103
we have shown benzenoids with only π-sextet or
“empty” rings, the benzenoids that have been referred
to by Clar as “fully benzenoid” structures, and can
also be called “the most aromatic aromatic com-
pounds”. In Figure 106 we show benzenoids which
also have only a single Clar structure. However, in
this case, in addition to the π-sextet rings and the
“empty” rings, there may appear rings with a single
“fixed” CC double bond. Finally, in Figure 107 we
illustrate several smaller benzenoids for which one
cannot draw a unique Clar structure. In order to fully
represent such benzenoids, one has to draw two or
more Clar’s valence structures. The resultant Clar
structure for these compounds should be viewed as
a superposition of all possible Clar’s structures. The
consequence is the occurrence of “migrating” π-sex-
tets, as Clar referred to π-sextets that are delocalized
over several benzene rings, depicted by arrows that
overlap several adjacent rings.

The above “geometric” definition of Clar structures
suffices for construction of Clar structures for any
benzenoid. So why would we need an alternative
definition of Clar structures? In order to answer this
and justify a search for an alternative definition of
Clar structures, we have to recognize that any Clar
structure can be readily decomposed into a subset of
Kekulé valence structures. This is illustrated in
Figure 108 again on benzo[ghi]perylene, which has
three π-sextets. Each π-sextet in benzo[ghi]perylene
results from a superposition of two benzene Kekulé
formulas in which, except for the ring considered, all
the remaining CC double bonds are in the same
locations. Hence, the Clar structure of benzo[ghi]-
perylene can be obtained by the superposition of eight

Kekulé formulas of benzo[ghi]perylene. The opposite
problem, that of determining in advance which eight
Kekulé structures of the possible 14 Kekulé struc-
tures contribute to the Clar structure of benzo[ghi]-
perylene, is of considerable interest and apparently
was not solved until very recently. The problem asks
for characterization of those Kekulé valence formulas
that lead to Clar’s structure. Looking at Figure 108,
one can ask why these particular eight Kekulé
structures of benzo[ghi]perylene make the Clar struc-
ture and not any of the remaining six structures of
the 14 Kekulé valence structures. What makes these
eight Kekulé structures of benzo[ghi]perylene more
important than the others?

To answer these questions, we have to solve the
“inverse Clar problem”. As just mentioned, the “in-
verse problem” of Clar’s structure asks one to char-
acterize those Kekulé valence structures that con-
tribute to Clar’s structure. If this could be solved, one
would be in a position to select the Kekulé structures
that make a contribution in advance s and not only
after first drawing Clar’s structures, as we did in
Figure 108 for benzo[ghi]perylene. Partial progress
toward solving the inverse problem was reported in
1990, when Kekulé valence structures were given
weights determined by the smallest Pauling bond
order for any of the CC double bonds appearing in
the Kekulé structure.207,709,710 For many smaller ben-
zenoids, when one superimposes Kekulé valence
structures having the maximal weight, one obtains
their Clar structures. However, this is not the case
with benzo[ghi]perylene. It is not difficult to see that
the smallest Pauling bond order involving the 11 CC
double bonds of benzo[ghi]perylene for four Kekulé
structures in the top row equals 5/14, while for the
four Kekulé structures in the bottom row it is 4/14.
If we superimpose only Kekulé structures of the
maximal weight, we do not get in the case of benzo-
[ghi]perylene the Clar structure. Besides benzo[ghi]-
perylene, in a few additional cases (illustrated in
Figure 109) the resulting valence structures obtained
by superposition of Kekulé valence structures of the
maximal Pauling weights look “almost” like Clar
structures, except for one or two rings, which instead
of having π-sextets have “fixed” CC single and CC
double bonds. Clearly, this ad hoc procedure that
leads to Clar’s structures for many benzenoid hydro-
carbons leads in the right direction s but not always
to the correct answer. Something was still missing
in our characterization of Kekulé structures that
yield the Clar structures!

Figure 108. The eight Kekulé structures of dibenzo[ghi]-
perylene that define its Clar structure.

Figure 109. Valence structures that look almost like Clar
structures (except for one or two rings), obtained by the
minimax procedure based on Pauling bond orders.
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B. Mathematical Definition of Clar’s Valence
Formulas

The first impulse towards a revision and a
reconstruction of a physical theory is nearly
always given by a discovery of one or more facts
which cannot be fitted into the existing theory
... But it is often very difficult and complicated
question to decide in what part of the theory the
improvement has to be made.

Max Planck674

To solve the inverse problem of Clar structures we
have to find, among the structural features, the “key”
that characterizes a subset of Kekulé valence struc-
tures. Clearly, we need some criteria that will
eliminate some Kekulé structures from consideration
while retaining others. Using the weights based on
the Pauling bond orders seemed a good idea s but it
did not work in all cases. In science, apparently just
having a “good idea” is not enough. In a later section
of this review we will mention other “good” ideas,
those of the “parity of Kekulé valence structures”, and
the “algebraic structure count”, that despite being
attractive have also been shown to have serious
limitations. The idea of the parity of Kekulé struc-
tures was introduced in the early days of the VB
theory by Dewar and Longuet-Higgins.474 It gave
good results in some applications but not in others.
The same was true with the algebraic structure count
used on biphenylene derivatives, in which by follow-
ing some rules one associates positive and negative
numbers with valence structures. In such situations,
often it is best to abandon these approaches and try
with a new start.

Obviously, some ideas and models may lead to
“good results”, while others lead to a “dead end”.
Sometimes a “good idea” that has been proposed in
relation to a particular problem may be recognized
as being important in problems that are apparently
unrelated. This is what happened with solving the
inverse problem of Clar’s structures. We have already
outlined the “innate degree of freedom” of Kekulé
valence structures, a “good idea” that had limited
application.217,218 However, if we superimpose Kekulé
valence structures of the maximal innate degree of
freedom, we may be surprised that we always obtain
the Clar structure for the benzenoid considered.
Hence, we have the following mathematical definition
for Clar structures:86,87

Definition: The Clar structure of a benzenoid hy-
drocarbon is given by a superposition of Kekulé
valence structures of the maximal degree of freedom.

In practical terms, the geometrical approach to
construction of Clar’s structures is clearly simple
enough and simpler than drawing all Kekulé valence
structures of a benzenoid and investigating their
degrees of freedom. However, when it comes to
computer manipulations of Kekulé valence struc-
tures, the mathematical definition has some advan-
tages. We should add that by solving the inverse
problem we obtained an insight into the structural
factors that play a role in Clar’s model of benzenoid
hydrocarbons. Most importantly, however, is that

now, with a mathematical definition of Clar struc-
tures, we can extend the concept of Clar π-sextets to
non-benzenoid hydrocarbons, including fullerenes,
which was until now not possible.

XXX. Quantum Chemical Justification for Clar’s
Structures

By having a “mathematical” definition of Clar’s
formulas, we can appreciate the intuition of Clar, who
had no theoretical basis for justifying his valence
structures. Clar knew nothing of the innate degrees
of freedom of Kekulé valence structures, yet he
arrived at a description of benzenoids in which the
innate degrees of freedom of Kekulé valence struc-
tures play the dominant role! Clar’s intuitive ap-
proach may have agitated skeptics who continued to
be reserved, and possibly “alarmed” critics that, in
this age of quantum chemistry, some “amateurs” look
the other way and seek truth, apparently disregard-
ing the “deep” truth of quantum theory. But one
should be reminded here of a statement recorded by
Werner Heisenberg, attributed to Niels Bohr:711

If you have a correct statement, then the opposite
of a correct statement is of course an incorrect
statement, a wrong statement. But when you
have a deep truth, then the opposite of the deep
truth may again be deep truth.

Hence, one should differentiate the fact that the
approach of Clar apparently lacks a tangible connec-
tion to quantum chemistry from assumptions that it
contradicts quantum chemistry s as it does not!

One could turn the question around and ask why
the believers in the “ultimate theory” should totally
ignore facts, the empirical approaches such as Clar’s
approach. The experimental arguments that support
Clar’s model were outlined, besides in the re-
search of Clar,49,50 by Zander,712 Voigtländer and
co-workers,713-715 Glidewell and Lloyd,580,581 and
others.716-718 Anyway, now that we found the missing
link between Clar’s formulas and the corresponding
graph theoretical model, a quantum chemical justi-
fication of Clar’s approach is possible. The approach
to be shortly outlined can be viewed as a “reversal”
of the pioneering approach of Polansky and Der-
flinger,582 who interpreted quantum chemical results
(HMO calculations on benzenoids) in terms of graph
theoretical concepts (like partitioning of MO’s into
ring components), which in itself can be viewed as a
quantum chemical justification of Clar’s formulas.
Now just the opposite will be the case: The well-
established graph theoretical scheme of local aroma-
ticity characterization will be interpreted in terms
of quantum chemical quantities.

In order to see if Clar structures have quantum
chemical justification, we will make a careful analysis
of the benzenoids depicted in Figure 110, where in
the case that there are several Clar structures, only
one was shown. In particular, we will make a
comparison between characterizations of various
benzene rings of these structures as suggested by
their Clar structures and as based on quantum
chemically computed contributions of their rings to
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the molecular RE. We gave in Figure 96 the graph
theoretical ring indices for these benzenoids. In
Figure 111 we show quantum chemically evaluated
ring RE contributions to the molecular resonance
energy RE for the same set of benzenoids. If we can
find a strong correlation between the numbers in
Figure 96, which are of graph theoretical origin, and
the numbers in Figure 111, which are of quantum
chemical origin, we would establish the missing

connection between Clar’s π-model and quantum
chemistry, even though regression between quanti-
ties does not imply a causal relationship.

The ring RE is determined by multiplying the ring
codes by R1, R2, and R3 in their RE expressions, i.e.,
by 0.815, 0.302, and 0.118 eV, respectively. Recall
that these numbers represent the contribution of
conjugated circuits of different size to the molecular
RE, as based on SCF MO parametrization of R1, R2,
and R3. The ring numbers of Figure 111 can be
viewed as quantum chemically derived quantities
that have “nothing to do” neither with Kekulé valence
structures nor with Clar valence structures, because
they merely represent a partitioning of a computed
molecular property, RE, to molecular components,
here taken to be fragments representing individual
benzene rings. One could, if one so desires, partition
RE into components, which could be individual
Kekulé valence formulas, in which case one would
obtain some indication of the relative importance of
an individual Kekulé valence structure according to
RE calculations. In fact, most earlier calculations of
the molecular RE via conjugated circuits were com-
pleted by calculating the contributions of the indi-
vidual Kekulé valence structures, which is very
practical if the number of Kekulé structures is not
excessive.

Let us now consider the numerical Clar valence
structures shown in Figure 96, in which the reported
ring indices result from a pure graph theoretical
analysis, counting the occurrence of Kekulé benzene
rings in a particular location in a molecule. One can
characterize this activity as something that has
“nothing to do” with the quantum chemistry or the
quantum mechanics. When indices derived in this
way (that are normalized to the number of Kekulé
valence structure) are plotted against the ring RE,
we obtain the correlation shown in Figure 112.
Support for our claim that quantum chemically

Figure 110. Smaller benzenoids selected for comparison of ring RE. (In cases of molecules having more than one Clar
structure, only one Clar structure is shown.)

Figure 111. Quantum-chemically computed ring contri-
butions to molecular RE for the smaller benzenoids shown
in Figure 110.
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computed RE values support Clar’s structures follows
from Figure 112, in which we show a correlation
between the two sets of indices for which there was
no a priori rationale to expect correlation, the least
strong correlation. The correlation between the two
sets of rings supports Clar’s qualitative representa-
tion of benzenoid hydrocarbons by π-electron sextets.
Skeptics may not be willing to accept our arguments
on two counts: (1) We did not perform any quantum
chemical calculations, but rather based our partition-
ing of molecular RE on parameters of the calculations
of Dewar and de Llano.39 (2) We have not offered any
rigorous mathematical justification for the validity
of Clar structures, but “only” established correlation
using statistical analysis. It is well known that a
correlation, even of very high quality, does not
necessarily imply a cause-effect relationship; that
is, it has no connotation of “causality”.

Concerning the first point, recall that the values
chosen for R1, R2, and R3 are of quantum chemical
origin. One can, just as Herndon did in his resonance
theory,164 define these quantities as quantum chemi-
cal interaction integrals, which can be computed if
necessary. The resonance theory of Herndon, just as
conjugated circuits calculations, represents math-
ematical models, except that one is cast in the
terminology of quantum chemistry and the other in
the terminology of graph theory. Herndon,540 along
with Schaad and Hess,541 was first to point out that,
under certain conditions, the two models are math-
ematically fully equivalent. They differ in the con-
ceptual frame and the computational procedures,
particularly when it comes to calculations on large
systems. Let us clarify this on buckminsterfullerene,
C60, which has 12 500 Kekulé valence structures.155

According to Klein and co-workers,481 one can
enumerate not only the Kekulé valence structures
but also conjugated circuits of different size using the
transfer matrix approach481-486 (briefly mentioned in
the introductory part of this review). In the case of
C60, the expression for the RE is155

or

Assuming that the contributions from R3 and Q3
approximately cancel each other, we obtain an esti-
mate for the RE of buckminsterfullerene of 6.866 eV,
or 0.114 REPE. This is comparable with the values
for many conjugated hydrocarbons.

More serious appears the objection of skeptics
concerning the lack of a causal relationship between
Clar structures and quantum chemistry. According
to one reviewer:

I read this section with much interest, but it is
a shame that, in the end, the “missing connec-
tion” in the Clar idea, that Professor Randić
refers to, turn out to be just a statistical correla-
tion, rather than something that displays a
necessary causative connection. I thus found the
argument for Clar’s idea to be disappointingly
qualitative s I should like to see a nice, rigorous
mathematical justification.

Well, I could start with the reply, I would also like
to see a nice, rigorous mathematical justification.
However, rigorous mathematical justifications can be
put forward to prove equivalence of apparently dis-
similar theories or models, as was the case with the
early matrix mechanics described by Heisenberg and
the wave mechanics of Schrödinger, or on a much
smaller scale, the case of Herndon’s resonance theory
and the conjugated circuits model described by this
author. We also mentioned earlier the equivalence of
the spectral theory of graphs and the Hückel Molec-
ular orbital method, the importance of which turned
out to be in part the main cause for the prolonged
confusion of the chemical graph theory with the HMO
method that persisted for quite a time. But we are
here addressing a different issue, the issue of repre-
sentation of molecular structure. Molecules can be
represented in very many different ways, each having
some advantage for a particular use. In particular,
we have been concerned with Clar’s representations
of benzenoid hydrocarbons and were exploring their
use for describing molecules and their properties.
Formally, Clar structures are purely notational de-
vices that may turn out to be useful, awkward,
useless, unnecessary, misleading, etc. What we have
tried to show is not only that Clar structures are a
useful notational novelty (if one can speak of some-
thing over 75 years old as a novelty!), but also that
they are more than a notational device.

That selection of a notation is of greater importance
in science than some may think is well illustrated
by the history of the origin of calculus. It is generally
believed that Newton and Leibniz independently
developed calculus. Apparently, after the deaths of
Newton and Leibniz, the followers of Newton in
England and the followers of Leibniz in continental
Europe were bitterly engaged in the “dispute” over
the priority in the discovery of calculus. It has been
said that England was behind in the development of
calculus by about 100 years. This can be attributed

Figure 112. Plot of the graph theoretical ring RE and the
quantum chemical ring RE for the benzenoids shown in
Figure 110.

RE ) 6.6528R1 + 4.7808R2 + 3.5808R3 +
4.0704Q3

RE ) (83 160 R1 + 59 760 R2 + 44 760 R3 +
50 880 Q3)/12 500

Aromaticity of Polycyclic Conjugated Hydrocarbons Chemical Reviews, 2003, Vol. 103, No. 9 3551



in part to a lack of flexibility of the notation used by
Newton as compared with the notation developed by
Leibniz. English mathematicians favored Newton
and followed Newton’s notation, while in continental
Europe mathematicians followed Leibniz notation,
which was superior. Leibniz’s notation was “opera-
tional”; that is, it allowed one to separate the sign
for derivative df/dx into df, dx, d/dx, etc., each of
which has its own meaning. Incidentally, it was the
English mathematician Cayley, who made the first
enumeration in graph theory followed by enumera-
tion of chemical isomers in 1875, who is responsible
for “resurrecting” Leibniz’s notation in English math-
ematical circles.

Over the years, Clar’s structures could have been
found inadequate, improper, fallacious, etc. s but
they were not. Now, suppose that at the end of our
comparison of the numerically represented Clar
structures and quantum chemically computed ring
RE we found no correlation at all, the two set of ring
indices not being correlated at all s we would then
have to conclude that Clar’s notion of π-aromatic
sextets is not sound! This would be a valid conclusion
because partitioning of RE into ring contributions is
a legitimate computational process s and hence ring
RE values are valid structural descriptors (like bond
orders and such, that are generally accepted). That
would be the end of Clar s but as we can see from
Figure 112, the outcome of the partitioning of the
quantum chemically computed RE parallels the
expectations that Clar structures suggest! Hence, this
is a new beginning for Clar structures, if I may say
so s not an end.

As is well known, statistics can be used and
misused, and not used! Arguments that statistics is
less reliable, not causative, and such may turn some
away. That some scientists have reservations about
arguments based on statistics is well reflected in the
quotation from Ernest Rutherford (1871-1937): “If
your experiment needs statistics, you ought to have
done a better experiment.” But for us the choice is not
to do an experiment or not to do one, but to use
statistics or not to use them. Without statistics our
arguments would be qualitative; with statistics they
become quantitative. The correlation between the
ring RE and the graph theoretical descriptor R1/K,
illustrated in Figure 112, is characterized by the
following statistical parameters:

where r is the correlation coefficient, s the standard
error, and F the Fisher ratio. The regression is of
such good quality that it allows one not only to
compute ring RE and total RE with sufficient ac-
curacy, but also to make such computations “on the
back of an envelope”. Instead, to consider all Kekulé
valence structures and count all conjugated circuits,
it suffices to examine the Clar structure and assign
to its ring corresponding fractions that give the
frequency of Kekulé benzene rings in different loca-
tions. Computations “on the back of an envelope” in
themselves are of no such importance today as they
would have been in the time of Clar, but more
important is the fact that such “on the back of an

envelope” calculations often give better insights into
the underlying structural features of the model which
are lost or never attained in piles and piles of
numerical data that fast computers generate. In
order to see the advantage of modeling, we will
address in the next section some questions relating
to analysis of data in general and RE of benzenoid
hydrocarbons in particular.

XXXI. On Interpretation of Molecular Resonance
Energy

As has already been said more than once, graph
theory does not give, on its own, any molecular
property s it needs input either from experiments or
from theoretical computations. Data obtained in this
way could then indicate numerical values for the
parameters used, like here the relative contributions
of the conjugated circuits R1, R2, and R3. Hence, the
question is not whether we should calculate RE by
advanced quantum chemical methods or by relatively
simple graph theoretical schemes. When it comes to
molecular RE, clearly ab initio MO theory and
accurate VB theory can obtain the necessary numer-
ical results. However, neither MO nor VB theory can
tell us why benzo[a]pentaphene has larger RE than
dibenzo[a,c]naphthacene, both of which have the
same number of Kekulé valence structures, or why
benzo[i]pentahelicene and dibenzo[f,k]tetraphene both
have the same RE? Clar’s model and the conjugated
circuits expressions for RE here give answers that
clearly cannot be obtained without resorting to
concepts that are outside quantum chemistry.

For the most part, much of the debate in the past
between MO and VB theories versus graph theory
has illustrated misconceptions about chemical graph
theory. The two theoretical methodologies, quantum
chemical and graph theoretical, consider somewhat
different questions or different aspects of the same
problem and are thus complementary to one another
rather than competitive. So while MO and VB
theories are, and will remain, about “the nature of
the chemical bond”, we can say that Clar’s model and
chemical graph theory are, and will remain, about
“the nature of the chemical structure”. Clearly, we
need both the quantum chemical tool and the graph
theoretical ideas to be combined in order to advance
our understanding of complex chemical systems.

XXXII. Other Points
It is unusual for only one model to be compatible
with experimental observations. Often data are
not sufficiently extensive to discriminate among
rival models and new experiments must be
designed to answer the outstanding questions.
The statistical, graph theoretical, and sensitivity
analysis methods ... can identify the areas for
further investigation that are likely to produce
significant new results.

M. C. Kohn719

In this section we will first revisit benzenoid
hydrocarbons and examine the possibility of discrimi-
nating between various Kekulé valence structures.

r ) 0.9961; s ) 0.019; F ) 4883
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Although, as we will see, discrimination between
contributing Kekulé valence structures will produce
alternative quantitative characterization of mol-
ecules, it does not result in a dramatic change of the
picture of benzenoid hydrocarbons. Extension of such
considerations to biphenylene and closely related [n]-
phenylenes, however, as we will see, has a more
dramatic effect. What we propose to do is to exclude
from considerations as “undesirable” Kekulé valence
structures of a lesser degree of freedom. We will find
then that the bent [n]phenylenes became stable, in
agreement with their successful experimental syn-
theses. We will also re-examine the concept of super-
aromaticity, evoked by Clar, and will see, following
the arguments of Aihara, that notion of super-
aromaticity, though it may look attractive, is not
valid. The findings of Aihara agree fully with the
model of conjugated circuits, which also does not
support such a notion. We will then outline gener-
alizations of Clar structures as pioneered by Hosoya,
Herndon, and their collaborators. Finally, we will
very briefly refer to the aromaticity of fullerenes,
particularly from the point of view of the conjugated
circuits model. A more detailed account of the valence
bond view of fullerene can be found in a chapter by
Schmalz720 in the recent book on VB theory, and in
papers by Schmalz, Klein, and Lui.721,722 We will end
with a description of the Clar structures of buckmin-
sterfullerene.

A. Benzenoid Hydrocarbons Revisited

How often have I said to you that when you have
eliminated the impossible, whatever remains,
however improbable, must be the truth?

Conan Doyle723

We will only briefly outline the characterization of
benzenoid hydrocarbons when we restrict attention
solely to Kekulé valence structures of the highest
degree of freedom. This is tantamount to describing
benzenoid hydrocarbons only by Clar structures. In
Table 46 we have collected the expressions for RE
for smaller benzenoids based solely on Kekulé struc-
tures of the maximal df. In the last column of Table
46, we have indicated by an asterisk the compounds
for which all Kekulé valence structures have the
same df s hence, benzenoids for which the expression
for RE has not changed when comparison is made
with similar expressions for RE in Table 15 based
on the use of all Kekulé valence structures. These
cases include all acenes (linearly fused benzenoids
like naphthalene, anthracene, tetracene, etc., with
df ) 1) as well as all even-ring fibonaccenes (chry-
sene, fulminene, etc., with df ) 2). In passing, let us
mention that the label “fibonaccenes” for families of
benzenoid hydrocarbons for which Kn+1 is given by
Kn + Kn-1, where subscripts n+1, n, and n-1 relate
to successive members of the family, each having one

Table 46. Expressions for RE for the Smaller Benzenoids (Shown in Figure 53) Based Solely on Kekulé
Structures of the Maximal dfa

molecule RE expression based on maximal df RE difference

1/53 (2R1)/2 0.3376 -0.0341 *
2/53 (4R1 + 2R2)/3 0.4791 -0.0272 *
3/53 (6R1 + 4R2 + 2R3)/4 0.6037 -0.0272 *
4/53 (9R1 + 2R2 + R3)/4 0.6678 -0.0275
5/53 (8R1 + 6R2 + 4R3 + 2R4)/5 0.6784 0.0199 *
6/53 (15R1 + 6R2 + 2R3 + R4)/6 0.7829 -0.0066
7/53 (20R1 + 10R2 + 2R3)/8 0.8023 0.0145 *
8/53 (25R1 + 3R2 + 3R3 + R4)/8 0.8395 0.0154 *
9/53 (10R1 + 4R2 + 2R3)/4 0.8008 -0.0771
10/53 (10R1 + 8R2 + 6R3 + 4R4 + 2R5)/6 0.7283 0.0924 *
11/53 (21R1 + 10R2 + 6R3 + 2R4)/8 0.8808 0.0202
12/53 (25R1 + 14R2 + 3R3)/9 0.9008 0.0149
13/53 (28R1 + 8R2 + 4R3)/8 0.9980 -0.0257
14/53 (30R1 + 18R2 + 6R3 + R4)/11 0.9229 0.0300
15/53 (28R1 + 10R2 + 2R3)/8 0.9995 0.0009
16/53 (41R1 + 12R2 + 3R3 + 4R4)/12 0.9546 0.0434
17/53 (42R1 + 13R2 + 4R3 + R4)/13 0.9242 0.1000
18/53 (27R1 + 7R2 + 5R3 + R4)/8 0.9726 -0.0325
19/53 (21R1 + 11R2 + 5R3 + 3R4)/8 0.8816 0.0074
20/53 (36R1 + 24R2 + 14R3)/13 1.0122 0.0397 *
21/53 (22R1 + 14R2 + 9R3 + 3R4)/8 1.0027 -0.0389
22/53 (29R1 + 11R2 + 7R3 + R4)/8 1.1057 -0.0588
23/53 (70R1 + 14R2 + 12R3)/16 1.1832 0.0421
24/53 (48R1 + 28R2 + 11R3 + R4)/13 1.2044 -0.0173
25/53 (68R1 + 12R2 + 12R3 + 4R4)/16 1.1444 0.0116
26/53 (168R1 + 24R2 + 24R3 + 8R4)/32 1.2044 -0.0173
27/53 (32R1 + 16R2 + 8R3)/8 1.2641 -0.0795
28/53 (88R1 + 21R2 + 19R3)/16 n/ab

29/53 (48R1 + 32R2 + 16R3)/16 outlier *
30/53 (85R1 + 54R2 + 32R3 + 12R4 + 4R5)/21 n/a

a Asterisk indicates cases in which all Kekulé structures have the maximal df. b n/a ) not available.
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benzene ring less, apparently appeared for the first
time in the mathematical literature!724

In order to obtain a novel numerical value for RE
based only on Kekulé structures of maximal df, we
have to reparametrize the values for R1, R2, and R3.
The least-squares linear multi-regression yields (in
units of J):

with the statistical parameters r ) 0.9803, s ) 0.047,
and F ) 180 (where r is the coefficient of regression,
s the standard error, and F the Fisher ratio). The
above can be compared to the corresponding param-
eters obtained when all Kekulé valence structures are
considered:

with the statistical parameters r ) 0.9939, s ) 0.026,
and F ) 599. As we can see, the regression based on
RE expressions using all Kekulé valence structures
gives better statistical parameters. However, at the
same time, the regression based on RE expressions
using only Kekulé valence structures of the highest
degree of freedom is similarly accompanied by sat-
isfactory statistical parameters. In order to choose
between the two, we have to consider additional
factors. Observe that the relative magnitudes of the
conjugated circuits contributions, R1 and R2, have not
changed dramatically between the two alternative
approaches for determining the contributions of
conjugated circuits of different size, but the value of
R3 decreased from 0.1497 to 0.1077 J when only
Kekulé structures of the maximal degree of freedom
were used. This is very desirable, because within the
conjugated circuits models the contributions of R3
ought to be smaller than those of R2.

That R3 is now smaller than R2 is an important
result. Unexpectedly, we may view this result as an
independent argument in favor of Clar’s model for
benzenoid hydrocarbons. Recall that the condition R1
> R2 > R3 was evoked as a test of the internal
consistency of various semi-empirical quantum chemi-
cal calculations. Here we use the same arguments
not to discredit the VB calculations of Jiang and Li,
which we assumed to be correct, but rather to
discredit an assumption that all the Kekulé valence
structures within a molecule play equally important
roles. When we assume that only Kekulé structures
of the highest degree of freedom are relevant for
calculation of the molecular RE, which is tantamount
to assuming Clar’s aromatic π-sextet model for ben-
zenoid hydrocarbons, we see that we do satisfy the
condition R1 > R2 > R3, which is not the case when
R1, R2, and R3 were obtained by using all Kekulé
valence structures.

The “revised” expressions for RE have in the
denominator an effective K*, the number of Kekulé
valence structures that contribute to Clar structures.
Benzenoid hydrocarbons having a single Clar struc-
ture necessarily have K ) 2, 4, 8, 16, 32, etc., while
if K* * 2k (k ) 1, 2, 3, ...) we have benzenoid
hydrocarbons with a migrating π-aromatic sextet. We
have listed in Table 46 the revised graph theoretical

RE values (in units of the exchange integral J) and
the difference between the graph theoretical values
and the quantum chemically calculated values. As
we can see the agreement between the quantum
chemical calculations and the graph theoretical ones
is quite satisfactory, except for bisanthene (29/53).
For that reason bisanthene was excluded as an
outlier and its RE was not used in the calculation of
R1, R2 and R3 so that it does not influence numerical
values for parameters of R1, R2 and R3 to be used for
other molecules. For bisanthene Jiang and Li calcu-
lated RE as 1.2445 J, which is about 0.10 J above
the value of two molecules of anthracene RE (1.1530
J). Because the central rings in bisanthene have
essentially single CC bonds the central rings do not
participate in delocalization of π-electrons, just as is
the case with the central ring in perylene. In the case
of perylene Jiang and Li obtained for RE 0.8920 J,
which is very close to the value for two molecules of
naphthalene (0.9037 J). So apparently bisanthene
does not parallel the expectation that its RE is
approximately twice of that of anthracene. This may
be some artifacts of the calculations of RE, such as
caused by selection of the reference molecule or some
numerical error.

We should have mentioned that the multi-linear
regressions cited above are associated with a rela-
tively sizable constant term, which was 0.1404 and
0.0946 J for the Clar model and the model using all
Kekulé valence structures, respectively. The constant
terms of a regression affect the origin on the RE
energy scale. If we force the constants to be zero
instead of the already listed R1, R2, and R3 param-
eters, we obtain the following (in units of J):

(with r ) 0.9647, s ) 0.063, and F ) 98) when only
Kekulé structures of the maximal df are used. These
are to be compared to the parameters obtained when
all Kekulé valence structures are used:

(with r ) 0.9875, s ) 0.038, and F ) 288). Again, the
statistical parameters are somewhat better when all
Kekulé valence structures are considered in the
evaluation of RE, but unacceptable values for the
relative magnitude of R2 and R3 are obtained. In
contrast, when we limit the calculation of RE to the
Kekulé valence structures of the maximum degree
of freedom, as we can see, the relative values for
contributions of 6-member, 10-member, and 14-
member conjugated circuits are even somewhat
“improved” (making R3 appreciably smaller than R2.

In Table 47 we have collected RE and REPE values
obtained by the ambitious VB calculations of Wu and
Jiang,38 and those of Alexander and Schmalz,39 to be
compared to the RE values calculated by the simple
Hückel MO method. Both VB calculations used the
graphical unitary group technique that have pro-
duced highly efficient methods for ab initio calcula-
tions, the so-called graphical unitary group approach
(GUGA), in which only the non-zero matrix elements
are computed.182-190,725,726 One should recall that the

R1 ) 0.1972 R2 ) 0.1137 R3 ) 0.1077

R1 ) 0.2277 R2 ) 0.0841 R3 ) 0.1497

R1 ) 0.2304 R2 ) 0.1499 R3 ) 0.0982

R1 ) 0.2544 R2 ) 0.1033 R3 ) 0.1459
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number of singlet valence bond states increases very
fast, as indicated below by the Catalan numbers for
benzenoids having 1-12 fused benzene rings:

Because of the fast growth, the exact VB ground-state
energies as of today have been calculated for systems
up to eight rings or 28 π-electrons, which includes
molecules such as bisanthene, which has 4 × 107

configurations. The two exact VB calculations, those
of Wu and Jiang and those of Alexander and Schmalz,
reported the energies of the lowest state as the
molecular RE shown in Table 47, expressed in units
of the integral J (Wu and Jiang) and ∆E/J (Alexander
and Schmalz). The Hückel RE values are expressed,
as usual, in units of the â integral.

From Table 47 we can observe some discrepancies
between the RE and REPE values calculated by
different VB approaches and by the HMO method.
The first thing to notice is that REPE values, in the
calculations of Alexander and Schmalz and the HMO
method, increase with the size of the molecules,
leaving the smallest value for the benzene REPE.
This is not the case with the calculations of Wu and
Jiang and with graph theoretically calculated REPE.
Since the calculations of both Wu and Jiang on one
side and Alexander and Schmalz on the other side
are exact, we have to attribute the disagreement
between the two VB calculations to differences in
extracting the RE from the total energy of molecules
by the two groups of investigators. Despite these
differences, both calculations show similar trends in
molecular RE for some molecules. Thus, for example,
the two pyrene derivatives 18/53 and 19/53 show that
benzo[e]pyrene has a greater REPE than benzo[a]-
pyrene, which is expected from the Clar models for
these benzenoids. Benzo[e]pyrene has a single Clar
structure with three π-aromatic sextets and can be
viewed as closely related to triphenylene; thus, it is

not surprising that it has higher RE and REPE. In
contrast, benzo[a]pyrene has several Clar structures,
implying migrating π-sextets, and consequently lower
RE. This case well illustrates the distinction between
the quantum chemical approaches to molecular RE
and the graph theoretical approaches to RE. Quan-
tum chemical calculations can produce RE. In addi-
tion, one should not overlook the fact that quantum
chemical calculations give the total molecular energy
and the total molecular wave function, which allows
calculations of several other molecular properties.
However, quantum chemistry can tell nothing about
why, for instance, the RE in benzo[e]pyrene is bigger
than the RE in benzo[a]pyrene. Graph theory does
not produce numerical results on its own, but it
allows analysis of results of exact quantum chemical
calculations and may offer an interpretation of such
results. Graph theory can, among apparently unre-
lated data, discern patterns, like the additivity of the
RE in terms of the conjugated circuits.

Alexander and Schmalz made a comparison be-
tween their RE values and those obtained by the
simple Hückel MO method and found that the RE
values predicted by VB theory correlate well with the
results of the Hückel theory, “in spite of the very
different assumptions underlying the two methods.” 39

This correlation, in our view, may be an artifact of
the definition for RE adopted by Alexander and
Schmalz, who defined the VB resonance energy to
be the negative of the difference between the calcu-
lated VB energy of a molecule and the energy
expectation value for a single Kekulé structure. Each
Kekulé valence structure represents a covalent spin-
pairing in which each π-electron is singlet-paired to
an electron on a nearest-neighbor site. However,
different Kekulé valence structures will produce
different VB energies s thus possibly causing varia-
tion in computed RE values. In the case of the Hückel
MO method, one can define RE unambiguously as
the total energy found by assigning electrons to the
lowest available MO’s minus 2â for each isolated CC
double bond.39 That HMO theory does not properly
reflect the benzenoid character of hydrocarbons is
visible from the fact that the two fully benzenoid
hydrocarbons in Table 47, triphenylene (8/53) and
dibenzopyrene (25/53), which should have the largest
REPE values among the benzenoids shown in Figure
53, do not have the largest REPE values.

Before leaving this topic, we should comment once
again on the “testing” of various semi-empirical
methods using the condition for the relative contribu-
tions of conjugated circuits of different sizes: R1 >
R2 > R3. With the hindsight that we have now, one
should re-examine some of those approaches that
failed the test s because as we have seen here, it is
possible that methods that would have passed the
test at the time recognized the fact that not all
Kekulé valence structures participate necessarily in
characterization of benzenoid hydrocarbons, as sug-
gested by Clar’s model of benzenoid hydrocarbons.
We leave the task of re-testing semi-empirical meth-
ods to those interested in it as an exercise, in view
of the fact that most of these semi-empirical methods
are currently of limited interest, while the authors

Table 47. RE and REPE Values Calculated by
Ambitious VB Calculations of Wu and Jiang,38 and
Alexander and Schmalz,39 Compared to Hu1 ckel MO
RE and REPE

Wu and
Jiang

Alexander and
Schmalz HMO

molecule RE REPE RE REPE RE REPE

1/53 0.304 0.0507 1.1055 0.1843 2.0000 0.3333
2/43 0.452 0.0452 2.0399 0.2040 3.6832 0.3683
3/53 0.577 0.0412 2.9505 0.2108 5.3137 0.3796
4/53 0.641 0.0458 3.0255 0.2159 5.4483 0.3892
5/53 0.699 0.0388 3.8582 0.2143 6.9308 0.3850
6/53 0.777 0.0432 3.9445 0.2191 7.1013 0.3945
7/53 0.817 0.0454 3.9931 0.2218 7.1875 0.3993
8/53 0.855 0.0475 4.0394 0.2244 7.2745 0.4041
9/53 0.724 0.0453 3.6326 0.2270 6.5055 0.4066
10/53 0.821 0.0373 4.7665 0.2167 8.5440 0.3884
15/53 1.001 0.0455 4.9708 0.2259 8.9432 0.4065
18/53 0.941 0.0471 4.6513 0.2326 8.3361 0.4168
19/53 0.899 0.0450 4.5920 0.2296 8.2220 0.4111
21/53 0.964 0.0438 5.1935 0.2361 9.2529 0.4206
22/53 1.047 0.0476 5.2848 0.2402 9.4251 0.4284
24/53 - - 5.9510 0.2480 10.5718 0.4405
25/53 1.156 0.0482 5.6688 0.2362 10.1644 0.4235
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of such methods have the benefit of doubt that their
approach may, after all, not have failed the test.

B. Biphenylenes Revisited
As we have seen, Clar structures as strictly defined

hold for benzenoid hydrocarbons. Can the notion of
Clar’s structures for benzenoids be extended to non-
benzenoids? Can they be extended to biphenylenes?
From a theoretical point of view, biphenylene is an
intriguing structure built formally by fusion of six-
member and four-member rings. The central question
is whether it should be viewed as a doubly connected
pair of benzene rings, in an analogy with diphenyl,
which represents a singly connected pair of benzene
rings, or does the conjugation within four-member
ring make a substantial (anti-aromatic) contribution?

1. Parity of Kekulé Valence Structures

To account for specific properties of biphenylene
and structurally related non-benzenoids, the notion
of parity of Kekulé valence structures has been
considered. It has been recognized for a long time
that biphenylene is not as aromatic as phenanthrene,
although both have five Kekulé valence structures.
This contradicts the simple empirical finding that
holds for benzenoid hydrocarbons, that the resonance
energy, the aromaticity, and the stability increase
with K, the number of Kekulé valence structures. The
empirical relation described by Swinborne-Sheldrake
et al.432 has shown that, to a high degree, RE is
proportional to log K. Dewar and Longuet-Higgins474

tried to resolve the difficulty of biphenylene versus
phenanthrene by introducing the concept of the
parity of a Kekulé valence structure, which holds only
for alternant hydrocarbons. Alternant hydrocarbons
are defined as follows:

Definition: An alternant hydrocarbon is any poly-
cyclic conjugated hydrocarbon having only even-
member rings.

Hence, naphthalene, phenanthrene, pyrene, and
biphenylene are alternant hydrocarbons, while azu-
lene, pyracylene, and its isomers are non-alternant
conjugated hydrocarbons. The idea of classification
of hydrocarbons as alternant and non-alternant goes
back to Coulson and Longuet-Higgins and the early
days of HMO theory. An important property of
alternant hydrocarbons, as opposed to non-alternant,
is that for alternant systems all HMO eigenvalues
come in pairs (λi, while this is not the case for non-
alternant systems. It is interesting to mention that
this particular mathematical property of alternant

hydrocarbons was known to theoretical chemists
before it was re-discovered by mathematicians.

Parity is defined for individual Kekulé valence
structures of alternant benzenoids. We will illustrate
the concept and the definition on the Kekulé struc-
tures of biphenylene. In Figure 113 we depict the five
Kekulé structures of biphenylene. Parity is a relative
quantity defined for a pair of Kekulé valence struc-
tures. One can determine the parity of a Kekulé
structure by examining its superposition with a
Kekulé valence structure of known parity by the
following:

Definition: If superposition of two Kekulé structures
gives 4n + 2 conjugated circuits, the two Kekulé
valence structures are of the same parity. If superposi-
tion results in 4n conjugated circuits, the two Kekulé
valence structures are of the opposite parity.

We can assume, without loss of generality, that the
first Kekulé structure of biphenylene in Figure 113
has positive parity. The concept of parity assigns to
an individual Kekulé valence structure an algebraic
sign. As a result, the count of Kekulé structures is
modified accordingly and is given by adding positive
and negative contributions: ASC ) K+ - K-, where
K+ is the number of Kekulé valence structures of
positive parity and K- is the number of Kekulé
structures of negative parity, respectively. The re-
sulting count of valence structures has been referred
to as the algebraic structure count (ASC),727,728 or the
“corrected structure count”.462,464 According to Wilcox,
“algebraic number of structures of a molecule contain-
ing any number of non-fused 4n-membered rings is
the number of structures remaining after all struc-
tures having 2n cyclic double bonds within any of the
(4n)-membered rings have been deleted.” 727

Hence, while for biphenylene K ) 5, the ASC ) 3
because we have K+ ) 4 and K- )1. Cancellation of
contributions of structures of opposite parity in the
algebraic count of Kekulé valence structures can
explain the difference between biphenylene and
phenanthrene. The notion of parity of Kekulé valence
structures attracted a fair interest.727-739 Among its
limitations, if one may say so, is the fact that, as
Gutman, Randić, and Trinajstić740 pointed out, the
notion of parity cannot be extended to peri-condensed
systems, in which three odd rings have a common
carbon atom. True, as defined by Dewar and Longuet-
Higgins, the concept strictly holds for alternant
hydrocarbons. When three odd rings are fused with
a common carbon atom (Figure 114), parity assign-
ment leads to a contradiction requiring that the pairs
of structures (A,B), (A,C), and (B,C) have opposite
parity, but if (A,B) and (A,C) have opposite parity,
then the pair (B,C) has to be of the same parity, thus
contradicting the initial parity assignments.

Figure 113. Decomposition of the five Kekulé structures
of biphenylene into 4n + 2 and 4n conjugated circuits.

Figure 114. Tricyclic structure contradicting the parity
concept that is valid for alternant systems.740
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We brought up the discussion of the notion of parity
of Kekulé valence structures for several reasons. It
serves as an illustration of a concept that seemingly
appears elegant, worthy of attention: a notion that
is mathematically rigorous (within its domain of
definition), but at a same time a notion that is
introduced in an ad hoc manner and without enough
theoretical justification. At the same time, one can
show that the notion of parity may lead to misleading
conclusions concerning the chemical description of
conjugated hydrocarbons. In order to illustrate a
serious deficiency of the parity concept, consider bent
[3]phenylene, the biphenylene derivative shown in
Figure 115 having two cyclobutadiene rings. The
molecule has 13 Kekulé valence structures, 6 of
which are shown in Figure 115. It is a simple exercise
to construct and examine the 13 Kekulé valence
structures of bent [3]phenylene and find that K+ ) 9
and K- ) 5, and hence ASC ) 5. It is also clear that
Kekulé structures of negative parity (two of which
are shown in the second row of Figure 115) have
“unacceptable” CC double bonds in the four-member
ring, and hence ought to be rejected and not included
in the calculation of molecular RE, just as they have
been in the case of biphenylene. But the problem with
this parity approach is that the last Kekulé valence
structure shown in Figure 115, which if this argu-
ment on additivity of contributions from the local
structural features holds, should be rejected even
twice as “strongly”, because it has two unfavorable
four-member rings with bridging CdC bonds. Yet, the
last Kekulé structure shown in Figure 115 has the
same parity as the first, very favorable, Kekulé
valence structure!

Dias728 considered Wilcox’s hydrocarbons741 shown
in Figure 116 and pointed out some inconsistencies
with the ASC approach. According to Dias, consistent
results could be obtained if ASC could assume not
only positive but also negative values. At the bottom
of Figure 116 we give for Wilcox hydrocarbons the
count of Kekulé structures of positive parity, K+, and
those of negative K- parity, and the count of Kekulé
structures (K). In addition, we also indicated the
fraction of Kekulé structures having the maximal
degree of freedom df, designated as DF. As we can
see, DF is constant along the homologous series of
Wilcox hydrocarbons.

2. Degrees of Freedom of Kekulé Valence Structures of
Non-benzenoids

If we apply to Wilcox hydrocarbons the arguments
that characterize Clar structure, that is, if we con-
sider only Kekulé valence structures of the highest
innate degree of freedom, we no longer have difficul-
ties with either biphenylene or biphenylene deriva-
tives. It is not difficult to see that, of the five Kekulé
valence structures of biphenylene shown in Figure
113, four have df ) 2 and only one Kekulé valence
structure has df ) 1. Rather than considering the
difference in the number of Kekulé structures of
different degree of freedom analogous to ASC, we will
consider as the effective number of Kekulé valence
structures the number of structures contributing to
the Clar structure of the conjugated hydrocarbon, DF.
Hence, in the case of biphenylene, DF ) 4. In the
case of bent [3]phenylene, we find that eight Kekulé
structures have df ) 3, and six Kekulé structures
have df ) 2. The difference with ASC is that now,
besides the five structures of negative parity, also the
last Kekulé structure, which has positive parity, has
df ) 2. Thus, for bent [3]phenylene, DF ) 8. In Figure
117 we show for several biphenylene derivatives
Kekulé valence structures of low df value.

The approach based on discrimination of Kekulé
valence structures of different degree of freedom and
selection of only those Kekulé valences structures
that have the maximum innate degree of freedom
automatically extends the idea of Clar structures
from benzenoid hydrocarbons to non-benzenoid hy-
drocarbons, and even fullerenes. In Table 48 we show
RE values calculated using only Kekulé valence
structures of maximal degree of freedom for a selec-
tion of biphenylene derivatives. When we restrict the
contributions to molecular RE only to Kekulé valence
structures of maximal degree of freedom, we obtain
higher RE values than previously calculated. That
the “corrected” RE will increase can be easily under-
stood, because in summing the contributions from
different Kekulé valence structures, we have dis-
carded the contributions from Kekulé valence struc-
tures that make substantially smaller contributions

Figure 115. Several Kekulé valence structures of bent [3]-
phenylene and their degrees of freedom.

Figure 116. Cycloocta[def]biphenylene and related struc-
tures studied by Wilcox.741
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to the RE, and in this way the contributions of the
remaining Kekulé valence structures to RE have
increased. In the last column in Table 48 are shown
RE values based on the use of all Kekulé valence
structures. As we can see, the model based on all
Kekulé valence structures predicts instability for bent
cyclobutadiene derivatives scontrary to experimental
results.

C. Dilemma: Kekulé Structures or Clar
Structures?

To be, or not to be: that is the question.
W. Shakespeare, Hamlet

“To use all Kekulé valence structures, or only
Kekulé structures of maximal degree of freedom:
that is the question.” The failure of the concept of
parity, which did not offer satisfactory identification
in non-benzenoid hydrocarbons of Kekulé structures
that may be important for the description of such
molecules, has been resolved by discriminating Kekulé
structures using the “degree of freedom” of Kekulé
as the underlying basic concept. These attempts
toward better understanding of factors that are
critical for characterization of non-benzenoid hydro-

carbons have led to the central dilemma: for descrip-
tion of conjugated polycyclic hydrocarbons, should one
use the complete set of Kekulé valence structures or
a subset of Kekulé valence structures involved in
characterization of Clar structures? Briefly: Should
we use Kekulé structures or Clar structures to
describe polycyclic conjugated hydrocarbons?

For calculation of molecular RE, both approaches
require decomposition of Kekulé valence structures
into conjugated circuits. The outcomes of such enu-
meration will differ somewhat, and further theoreti-
cal as well as experimental arguments and facts can
assist us in resolving the dilemma. Both alternatives
are conceptually acceptable; that is, formally both are
equally legitimate and both can be viewed, in the
words of Niels Bohr, as “deep truth”. They do not
contradict each other s but one may be a “deeper
truth” than the other. Which? It is instructive here
to recall the discussion of bond orders as derived from
HMO and PPP models. The HMO calculations start
by assuming that all CC bond lengths are equal, but
at the end we find that they are not! Hence, we have
an innate inconsistency of the model (that is typical
also of other computational models and that can be
ameliorated by an iterative procedure until internal
consistency is reached). The results of PPP calcula-
tions of CC bond lengths can be interpreted as
suggesting that some Kekulé valence structures have
greater weight than others. Thus, besides the empiri-
cal rule of Fries that signaled that some Kekulé
valence structures are more important than others,
a similar message was contained in PPP calculations.
Finally, with the development of the conjugated
circuits model, it was found that not all Kekulé
valence structures make an equal contribution to RE.
However, it was Clar’s ideas of π-aromatic sextets
that required that some Kekulé structures be in-
cluded and some excluded from the pool of structures
that characterize benzenoid hydrocarbons. Hence, it
is either-or, a characterization by a discrete set of
valence structures, rather than use of continuos
weights based on real numbers. So we have to make
a choice:

(1) Should our models of benzenoid and non-benzenoid
hydrocarbons be based on characterization based
on the use of all Kekulé valence structures; or

(2) Should our models of benzenoid and non-benzenoid
hydrocarbons be based on characterization based
on use of a subset of Kekulé valence structures that
are implied by Clar structures of molecules?

Briefly: Kekulé valence structures or Clar valence
structures?

Figure 117. Kekulé valence structures of low df for a
collection of derivatives of biphenylene.

Table 48. RE Values Calculated for the Smaller Non-benzenoids Shown in Figure 66 Using Only Kekulé Valence
Structures of Maximal Degree of Freedoma

molecule only Kekulé structures of maximal df RE(only) RE/sextet RE(all)

1/66 (8 R1 +Q1 + 2Q2 + Q3)/4 1.390 0.695 0.878
7/66 (24R1 + 4Q1 + 8Q2 + 4Q3)/8 1.938 0.646 1.238
8/66 (24R1 + 4Q1 + 8Q2 + 4Q3)/8 1.938 0.646 0.837
9/66 (64R1 + 12Q1 + 24Q2 + 12Q3)/16 2.487 0.622 1.501
11/66 (64R1 + 12Q1 + 24Q2 + 12Q3)/16 2.487 0.622 0.840
13/66 (64R1 + 12Q1 + 24Q2 + 12Q3)/16 2.487 0.622 0.734
14/66 (160R1 + 32Q1 + 64Q2 + 32Q3)/32 3.035 0.607

a R1 ) 0.841 eV, R2 ) 0.336 eV. Q1 ) -0.650 eV, Q2 ) -0.260 eV.
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If we choose Kekulé structures, we should use them
for characterization of not only benzenoid hydrocar-
bons but also non-benzenoid hydrocarbons. If we
choose Clar structures, we should use them for
characterization of not only benzenoid hydrocarbons
but also non-benzenoid hydrocarbons. So far, we have
found the following arguments against Kekulé va-
lence structures (i.e., against use of all Kekulé
valence structures):

(1) Inconsistent parameters for some exact VB calcula-
tions that do not satisfy the inequality R1 > R2 >
R3.

(2) Stability of bent [n]phenalenes.

Both of these inconsistencies are fully eliminated
when we use only those Kekulé valence structures
that contribute to the Clar structure for the descrip-
tion of molecules. Observe that the dilemma is not
to use or not to use conjugated circuits, but whether
to use all Kekulé valence structures or only some.
Thus, if someone finds that bent [3]phenalene is as
stable as linear [3]phenylene (although the RE
calculated by the conjugated circuits model based on
all Kekulé valence structures does not support this),
it does not necessarily mean that “the primitive
graph theoretical approach based on conjugated
circuits model fails completely”, but perhaps that the
assumption that all Kekulé valence structures make
the same contributions to molecular RE “fails com-
pletely”. As we will see, this is indeed the case,
despite an attempt by some to place the blame for
the prediction of unstable bent [n]phenalenes on
“conjugated circuits model” instead of on the underly-
ing assumptions of alternative VB descriptions of [n]-
phenalenes.

Hence, it is of considerable interest to see what
happens with [3]phenylene and [4]phenylene isomers
when they are described by a subset of Kekulé
structures. By revisiting linear and angular isomers,
and including in the case of [4]phenylene the branched
isomer, we find that isomers have the same reso-
nance energy if only the Kekulé valence structures
of the highest degree of freedom are used for calcula-
tion of RE. Hence, unexpectedly, [n]phenylenes be-
came a testing ground for determining the validity
of the Clar model in general, and its extension to non-
benzenoid hydrocarbons in particular. Babić and
Trinajstić742 have examined RE for cis-bent [n]phen-
ylenes using several approaches, including the con-
jugated circuits model, and found that with the
conjugated circuits model the RE is fairly constant
among [n]phenylenes, which is also visible from Table
48. In contrast, we can see that RE for linearly fused
[n]phenylenes increases with the molecular size. This
then clearly points out what has been already said,
that in contrast with linearly fused benzenoid hy-
drocarbons, which become less and less stable as the
number of fused rings increases, this is not the case
with biphenylene derivatives. Observe that in linear
acenes all Kekulé valence structures have the same
df and are therefore included in the model based on
calculation of molecular stability when we restrict the
selection of Kekulé structures to those of the maximal
df, which is not the case with [n]phenalenes. Accord-

ing to the calculations of Kovaček, Margetić, and
Maksić, who at about the same time applied semi-
emprical AM1 calculations to a selection of biphen-
ylene derivatives, including linear and bent [3]-
phenylene, bent [3]phenalene is found stable: “that
bent [3]phenylene has a lower total energy in spite of
the fact that it is more localized system than the linear
isomer.” 743 They continue: “The primitive graph-
theoretical approach based on the “conjugated cir-
cuits” model fails completely in this respect.”

Let us assume that the semiemprical AM1 calcula-
tions are trustworthy and indeed that bent “[3]-
phenylene has a lower total energy... than the linear
isomer.” How can this contradict the results of the
“primitive” graph theoretical analysis of molecular
resonance energies using conjugated circuits in bi-
phenylene derivatives? Kovaček et al. were not
calculating RE at all. They were interested in con-
tributions of strained CC bonds associated with four-
member rings and were focusing on the difference
in stability in angular and linear [3]phenylene as-
sociated with re-hybridization and interaction of σ-
and π-electrons. The conjugated circuits model,
whether one refers to it as “primitive” or by other
derogative labels, has noting to do with calculations
of the overall molecular stability, with re-hybridiza-
tion of σ-electrons, with interactions of σ- and π-elec-
trons, with the notion of concertedness of σ- and
π-electrons, and such. All that it shows is that
molecular RE is circuit-additive, and more specifically
additive in terms of conjugated circuits. Molecular
RE is, of course, non-observable, but as long as it is
used in chemistry, it is useful to know that it is an
additive quantity in terms of conjugated circuits.
There is no doubt that quantum chemists can calcu-
late the RE of many conjugated benzenoid hydrocar-
bons, and calculate it with respectable precision, as
Dewar and De Llano did with their MINDO calcula-
tions. The result of such efforts is a list of numbers,
the RE values, for a list of compounds. Now, whether
it is a “primitive” discovery or a “prime” discovery
that a set of apparently unrelated quantities, RE
values, are out of “nowhere” found to be inter-related
is for readers to judge.

We decided to include this “Biphenylenes Revis-
ited” section in this review article on aromaticity for
two reasons: (1) to draw attention to the inadequacy
of the concept of parity of Kekulé valence structures
and the inconsistencies of the approaches based on
the “algebraic count” of Kekulé structures for discus-
sion of conjugated polycyclic hydrocarbons, which is
still practiced; and (2) to raise awareness in theoreti-
cal circles of a need for reliable computations of the
molecular energy and RE of non-benzenoid conju-
gated hydrocarbons. This is desirable not only so that
we can obtain better sets of parameters needed for
calculation of the resonance energies of non-ben-
zenoid hydrocarbons but also so that we can get
better insight into the roles of various Kekulé valence
structures in representation of molecules and find out
to what extent the ideas of Clar can be extended to
non-benzenoid systems. If we find out that indeed
only Kekulé valence structures of maximal degree of
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freedom are relevant for representation of non-
benzenoid hydrocarbons, then synthesis of anti-
kekulene should not be necessarily coupled with
unusual difficulties. The RE of anti-kekulene would
then be relatively large, and its RE/sextet would be
comparable in magnitude to the RE/sextet for struc-
turally related [n]phenylenes, several of which were
successfully synthesized.744-746 If all Kekulé valence
structures play a similar role, then the RE of anti-
kekulene would be of the same magnitude as the RE
in other bent [n]phenylenes, and consequently the
RE/sextet would decrease and suggest a lack of
stability.

Incidentally, the trivial name “anti-kekulene” for
the cyclic [6]phenylene C36H12 was introduced by
Diercks and Vollhardt.745

D. On Kekulene and Superaromaticity

Chemists have recognized for some time that some
Kekulé valence structures are simply “unacceptable”.
Such are the Kekulé structures shown in Figure 16,
the Kekulé valence structures of low degree of
freedom shown for kekulene in the lower part of
Figure 64, and the valence structures of biphenylene
derivatives shown in Figure 117, which have been
successfully synthesized by Staab and co-work-
ers.613,614 The question is whether such Kekulé struc-
tures can be completely ignored, which would suggest
extension of the notion of Clar’s aromatic π-sextet to
non-benzenoid hydrocarbons, or whether they play
some visible role in the overall calculation of the
molecular stability and molecular RE. Others have
also recognized the limited use of some Kekulé
valence structures. For example, Balaban character-
ized the valence structure of kekulene with df ) 3
as “incorrect”, in the sense that it is not important.
If that is the case, then even more “incorrect” would
be the last valence structure shown in Figure 65 with
df ) 2, which has been rejected, as discussed in the
literature, because it is not consistent with NMR data
nor with molecular geometry. In some respects keku-
lene is somewhat special, if not unique. For kekulene
there are 200 Kekulé valence structures, while Clar’s
structure of kekulene requires only contributions
from 64 Kekulé valence structures having df ) 6.

Usually the number of Kekulé valence structures of
the maximal df is relatively large or at least compa-
rable to the number of Kekulé structures of lower df.
The expression for molecular RE based on K ) 200
and the corresponding expression based on K* ) 64
are respectively

The numerical values for RE are 6.112 and 7.320 eV,
respectively. As we can see from the above, Clar’s
model enhances the RE by not considering Kekulé
valence structures of low priority (low df values),
which have fewer contributions from R1. Later we
will mention a somewhat similar situation with
buckminsterfullerene, for which Klein et al. have
shown that less than 50% of Kekulé valence struc-
tures contribute over 99.8% toward molecular RE.

In the case of kekulene and benzenoids having
coronene substructure illustrated in Figure 118, the
possibility of “extra” aromaticity, referred to as
“super-aromaticity”, due to the presence of conjuga-
tion involving the cyclic periphery of several fused
benzene rings has been raised. Clar49 has evoked the
notion of “super-aromaticity” when considering mi-
grating sextets of coronene, which is the smallest
benzenoid having a “super” ring made from the 18
carbon atoms on its periphery.

The idea of super-aromaticity (just as was the case
with the notion of parity of Kekulé valence struc-
tures) attracted attention.745-748 However, the pres-
ence of large conjugated circuits makes a small
contribution, if any, to molecular RE. So the question
can be raised: Is super-aromaticity a fact or an
artifact? In fact this question has been raised by
Aihara in an article entitled, “Is Superaromaticity a
Fact or an Artifact? The Kekulene Problem.” 747

Aihara has examined the kekulene problem on the
basis of several theoretical approaches, such as the
method of additive nodal increments of Cioslow-
ski,749,750 the method of conjugated circuits, the

Figure 118. Coronene and related benzenoids that have been thought to give rise to “super-aromaticity”.

RE ) (1188R1 + 696R2 + 174R3)/200 or
RE ) (5.94R1 + 3.48R2 + 0.87R3)

RE ) (480R1 + 192R2 + 96R3)/64 or
RE ) (7.50R1 + 3.00R2 + 1.50R3)
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topological resonance energy, and the circuit reso-
nance energies, and concluded the following:747

Graph-theoretical analysis have clarified that
super-conjugation resulting from the cyclic array
of benzene rings does not yield appreciable
super-aromatic energetic effects. Decisive evi-
dence for the lack of super-aromaticity in keku-
lene was given simply by calculating the energy
difference between true kekulene and super-
antiaromatic kekulene. The total π-electron en-
ergy of true kekulene is very close to that of
super-antiaromatic kekulene, hence, there is no
reason to believe that annulenoid conjugation
contributes much to the thermodynamic stability
of kekulene. Kekulene is a regular benzenoid
hydrocarbon in all aspects.

As Aihara points out, “This approach is general and
applicable to any macrocyclic conjugated systems with
an inner cavity.” Thus, the myth of super-aromaticity,
just as has been the case with the myth of parity,
has been demoted if not ended.

Finally, we should add that contributions from
large conjugated circuits should not be totally ruled
out as totally unimportant. It may depend on what
molecular property one considers. If we speak of
molecular stability and the molecular resonance
energy, then large conjugated circuits make negli-
gible contributions. But, if we look at [18]annulene,
as discussed by Sondheimer and Wolovsky,93 as being
planar, we have to attribute some role to the presence
of conjugation through conjugated circuits having 18
carbon atoms. It was believed by some that there is
a critical size beyond which conjugation accompanied
with equalization of CC bond lengths stop and
alternation of CC double and CC single bonds sets
in, and that may well be the case for conjugated
4n + 2 rings with n ) 5. This belief has been given a
death blow by Gossauer and Rexhauser of Berlin
Technical University,645 who succeeded in synthesiz-
ing a 22-π-electron system by enlarging a naturally
occurring porphyrin ring, which has 18 π-electrons.
For a popular account of this by no means small
synthetic achievement, see an article in New Scien-
tist.751

XXXIII. Clar Structures Revisited
Nothing is more interesting to the true theorist
than a fact which directly contradicts a theory
generally accepted up to that time ... But it is
often very difficult and complicated question to
decide in what part of the theory the improve-
ment has to be made.

M. Planck674

A. Exceptions to the Rule
In discussing the properties of benzocoronene,699

Clar has evoked a π-sextet structure (shown in Figure
119 at the top left) which has one sextet less than
the maximal number of possible aromatic sextets for
benzocoronene, that defines Clar’s structure (shown
in Figure 119 at the top right). The “lesser” Clar
structure was introduced in order to account for some

apparent features of benzocoronene that parallel
those of coronene, in which there are migrating
sextets and, as Clar believed, “super-aromaticity”.

Another somewhat related anomaly concerns tet-
rabenzoperylene, for which Clar proposed the struc-
ture shown at the bottom left of Figure 119.752 Clar
argued that in this structure all the CC double bonds
and all the four π-aromatic sextets are fixed, while
according to the generally outlined π-aromatic sextet
model, tetrabenzoperylene should have migrating
sextets, similar to those in benzo[c]phenanthrene,
which constitutes a fragment of tetrabenzoperylene.
It is not clear from the theoretical point of view why,
among several possible Clar structures, the one with
exocyclic CC double bonds to the central ring should
be preferred. But the “bay” protons show a chemical
shift at 872 Hz, indicative of π-electrons causing a
ring current in the central ring.753,754 In comparison,
the bay protons in perylene, which has an “empty”
ring, are at 805 Hz, and the bay protons of phenan-
threne are at 850 Hz. This suggests compellingly that
the central ring in tetrabenzoperylene is more similar
to the central ring of phenanthrene (which has a fixed
CC double bond in Clar’s structure) than to that of
perylene. It is interesting that the valence structure
of tetrabenzoperylene, for which Clar proposed the
structure shown at the bottom left of Figure 119 and
which involves exocyclic CC double bonds to the
central ring, is obtained as the result when instead
of using df for selecting Kekulé valence structures
to be combined into the Clar structure, we resort to
the weights given by the smallest Pauling bond order
for any of the CC double bonds in a Kekulé valence
structure. In Figure 120 are shown Kekulé valence
structures of benzo[c]phenanthrene and their weights
based on the smallest Pauling bond order for any of
the CC double bonds in a Kekulé structure. So, it may
be that the weights given by Pauling bond order may
be used to discriminate among Kekulé valence struc-
tures having the same df.

Anomalies like those pointed out may have stimu-
lated interest in the description of selected ben-
zenoids with additional Clar structures, which led to
the notion of generalized Clar structures.

Figure 119. Modified Clar structures of benzocoronene
(top left) and tetrabenzoperylene (bottom left) having one
sextet less than the corresponding Clar structures (right)
having the maximal number of aromatic sextets.
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B. Generalized Clar Structures
It was not until 1975 that Hosoya and Yamagu-

chi755,756 introduced generalized Clar structures, which
are defined as follows:

Definition: A generalized Clar structure of a poly-
cyclic benzenoid hydrocarbon is a valence formula in
which one or more aromatic π-sextets are inscribed
in non-adjacent benzene rings such that the remain-
ing part of the structure, obtained by deletion of
benzene rings with sextets, must have a Kekulé
valence structure.

Hence, the generalized Clar structure can always
be obtained from a Clar structure by erasing one or
more aromatic sextets. The set of generalized Clar
structures includes on one side the Clar structure
(that has the maximum number of sextets) and also,
by definition, the molecular graph without any sextet.
In Figure 121 we show the nine generalized Clar
structures for benzo[a]pyrene. Hosoya and Yamagu-
chi observed that the number of generalized Clar
structures equals the number of Kekulé valence
structures. Later Hosoya and Ohkami757,758 were able
to show that indeed there is a formal one-to-one
mapping between Kekulé valence structures and
generalized Clar structures. He and He have also
studied a one-to-one correspondence between Kekulé
structures and sextet patterns.759,760 This is an in-
triguing correspondence in that Clar structures imply
inclusion of at least two Kekulé valence structures,
and yet here we have a one-to-one relationship
between Clar structures with π-sextets and Kekulé
valence structures. To discern the correspondence

between the two, one has to focus attention on the
“vertical” CC double bonds in any of the Kekulé
valence structure. If a benzene ring has a “vertical”
CC double bond on the left side, it is called “left”, and
if it has a “vertical” CC bond on the right side, it is
called “right”, as shown in the middle of Figure 122).
Hence, first one differentiates between the “left” (L)
and the “right” (R) Kekulé valence structures of fused
benzene rings and then replaces each L ring by a
sextet circle, while ignoring rings without vertical CC
bonds and all R rings. It is not difficult to verify that
the nine Kekulé valence structures shown in the
lower part of Figure 122 have been ordered so as to
correspond to the nine generalized Clar structures
in Figure 121. Because of the one-to-one correspon-
dence, it appears that the generalized Clar structures
offer an alternative representation of benzenoid
hydrocarbons.

The above relationship between generalized Clar
structures and Kekulé valence structures holds for
classes of benzenoids that have no coronene sub-unit,
such as cata-condensed benzenoid hydrocarbons, for
which Gutman, Hosoya, and co-workers761 gave a
proof. Zhang and Chen762 have shown that, in the
case of coronene, and structures having coronene sub-
units, if a “super-ring” that involves 18 carbon atoms
on the molecular periphery is included as an “aro-
matic π-n-sextet”, again a one-to-one correspondence
between Kekulé structures and generalized Clar
structures is established. The “missing” structure for
the one-to-one correspondence of the super-aromatic-
ring sextet of Zhang and Chen corresponds to the
disjoint conjugated circuits illustrated in Figure 21.
For more on global and local properties of Clar
π-electron sextets and a quantitative approach to
Clar’s sextet model, consult ref 219.

Figure 120. The four Kekulé valence structures of benzo-
[c]phenanthrene, having the maximal weight based on the
smallest Pauling bond of CC double bonds.

Figure 121. The nine generalized Clar structures for
benzo[a]pyrene, described by Hosoya and Yamaguchi.755

Figure 122. “Left” (L) and “right” (R) Kekulé valence
structures of benzene. The “left” structure (indicated by a
small circle) was used to illustrate the correspondence
between the number of Kekulé valence structures and the
number of generalized Clar structures.
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C. Sextet Polynomial
Hosoya and Yamaguchi have introduced the sextet

polynomial as a book-keeping device for different
types of structures that occur in the generalized Clar
polynomial. By definition, the constant term of the
polynomial is equal to one (and corresponds to the
molecular graph of the benzenoid considered). The
coefficients of various powers of x that constitute the
polynomial count the number of structures having
different number of π-sextets, and the coefficient of
the term xk tells how many k sextets are in the
molecule. For example, for benzo[a]pyrene the sextet
polynomial is S(x) ) 1 + 5x + 3x2, which means that
there are three structures with two sextets, five with
one sextet, and one structure with no sextet. In Table
49 we have listed sextet polynomials for a collection
of smaller benzenoid hydrocarbons, as reported by
Hosoya and Yamaguchi.755 The coefficients of the
sextet polynomials have been referred to as the
“resonant sextet number”, that is, the number of
ways in which k mutually resonant sextets can be
selected in a benzenoid structure.

Sextet polynomials have several interesting math-
ematical properties that allow one to use recursion
formulas to derive sextet polynomials for larger
benzenoid hydrocarbons.761 As Hosoya and Yamagu-
chi755 and Knop and Trinajstić764 pointed out, one can
derive from the sextet polynomial useful structural
invariants of benzenoids. By setting x ) 1, we have
S(1) ) K, the number of Kekulé valence structures
of the benzenoid. This may appear a trivial result,
but the fact that one can construct sextet polynomi-
als, at least for structurally related families of graphs
by recursion, allows one to find K in some large
benzenoids without actually using any typical count-
ing algorithms. It is also easy to evaluate the deriva-
tives of the sextet polynomial, dS/dx, which graphi-
cally corresponds to the collection of subgraphs of the
graph G of the benzenoid considered, obtained by
erasing one ring and all adjacent edges at a time. If

we set x ) 1 in dS/dx (that is, in the notation of
Newton, S′(1)), we obtain, as Knop and Trinajstić
pointed out, the number of integrals γ1 which enter
into Herndon’s resonance theory. Alternatively, this
is the number of edges in the resonance graphs
depicted in Figures 69-71, and twice dS/dx for x ) 1
gives the number of conjugated circuits R1.

By knowing S(1) and S′(1), we can construct the
quotient S′(1)/S(1), which is a measure of the total
aromaticity of a benzenoid, as outlined by this author
in an early paper on conjugated circuits.765,766

D. Canonical Clar Structures
Herndon and Hosoya539 re-examined the concept

of generalized Clar structures and suggested the use
of only a subset of generalized Clar structures which
satisfy the condition that once circles representing
aromatic sextet are inscribed, the remaining part of
a structure should have a unique assignment of CC
double and CC single bonds. They referred to this
subset as the canonical set of Clar structures. In
Figure 123 we have illustrated the five structures
that form the canonical set of Clar structures for
benzo[ghi]perylene. Using the canonical set as a
basis, Herndon and Hosoya outlined an empirical VB

Table 49. Sextet Polynomials for a Collection of Smaller Benzenoid Hydrocarbons (As Reported by Hosoya and
Yamaguchi755)

molecule S(x) S′(x) S(1) S′(1)

benzene 1 + x 1 2 1
naphthalene 1 + 2x 2 3 2
anthracene 1 + 3x 3 4 3
phenanthrene 1 + 3x + x2 3 + 2x 5 5
tetracene 1 + 4x 4 5 4
benzanthracene 1 + 4x + 2x2 4 + 4x 7 8
chrysene 1 + 4x + 3x2 4 + 4x 8 10
benz[c]phenanthrene 1 + 4x + 3x2 4 + 9x 9 13
triphenylene 1 + 4x + 3x2 + x3 4 + 6x + 3x2 6 6
pyrene 1 + 4x + x2 4 + 2x 6 5
pentacene 1 + 5x 5 9 11
benztetracene 1 + 5x + 3x2 5 + 6x 10 13
pentaphene 1 + 5x + 4x2 5 + 8x 11 15
benzo[b]chrysene 1 + 5x + 5x2 5 + 10x 12 18
dibenzo[a,h]anthracene 1 + 5x + 5x2 + x3 5 + 10x + 3x2 13 20
picene 1 + 5x + 6x2 + x3 5 + 12x + 3x2 13 21
benzo[b]triphenylene 1 + 5x + 5x2 + 2x3 5 + 10x + 6x2 14 23
benzo[g]chrysene 1 + 5x + 6x2 + 2x3 5 + 12x + 6x2 9 11
benzo[a]pyrene 1 + 5x + 3x2 5 + 6x 9 12
perylene 1 + 4x + 4x2 4 + 8x 11 16
benzo[d]pyrene 1 + 5x + 4x2 + x3 5 + 8x + 3x2 19 31
coronene* 1 + 8x + 9x2 + 2x3 8 + 18x + 6x2 20 32

Figure 123. Canonical set of Clar structures, described
by Herndon and Hosoya,539 illustrated on benzo[ghi]-
perylene.
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calculation of RE. The total RE was obtained by
solving the secular equation of an effective Hamil-
tonian:

where I is the N × N unit matrix (having all elements
zero except those on the main diagonal, which are
equal to one), and the Q matrix involves interaction
terms which can be obtained by counting the aro-
matic sextets and CC double bonds involved in
π-sextet migrations following the rules outlined in
their paper. In Table 50 we show the resonance
energies for a set of benzenoid hydrocarbons as
reported by Hosoya and Herndon based on the
parameters a ) 0.8590, b ) 0.0744, and k ) 0.3176,
determined from a linear regression of the SCF MO
resonance energies obtained by Dewar and de Llano
on 10 smaller benzenoids when using the canonical
Clar structures. Here, a refers to a Coulomb-type
integral for the aromatic sextet, b is a Coulomb-type
integral for CC double bonds, and k represents the
VB exchange integral associated with resonance
between two Clar structures associated with a single
migrating π-sextet. In practice, a and b represent the
counts of π-sextets and CC double bonds. Observe the
very good agreement between the RE(SCF) and
RE(VB) based on the canonical Clar formulas. Hern-
don and Hosoya used the corrected values for RE for
pyrene, benzo[a]pyrene, and benzo[e]pyrene, the
compounds that apparently were in error as reported
in the initial work of Dewar and de Llano. The very
good agreement between the calculated RE(SCF) and
RE(VB) may be viewed as an additional argument
in favor of Clar’s description of benzenoid hydrocar-
bons.

E. Resonant Clar Structures

This author has suggested87 another subset of
generalized Clar structures as potentially interesting
for characterization of benzenoid hydrocarbons, il-
lustrated for benzo[ghi]perylene in Figure 124. These
structures are constructed by allowing only super-
position of the Kekulé valence structures of the same
degree of freedom. In the case of benzo[ghi]perylene,
as one can see by comparing Figures 123 and 124,
only the first structure, which is the “classical” Clar
structure for benzo[ghi]perylene, is the same. Under
each structure in Figure 124 we have indicated with
letters A-N the Kekulé valence structures of benzo-
[ghi]perylene involved in the superposition using the
labels A-N already shown in Figure 15. The first
novel Clar structure involved superposition of eight
Kekulé valence structures having the maximal de-
gree of freedom, df ) 3. The next four structures
result from superposition of Kekulé valence struc-
tures having df ) 2. Finally, as we can see, the last
structure is the Kekulé valence structure having df
) 1, which is the only structure with df ) 1, and
hence cannot participate in superimposition with
other structures. We may refer to this novel canonical
set of Clar structures as resonant Clar structures,
or “R-Clar” structures, to avoid confusion with Hern-
don and Hosoya’s canonical Clar structures, which
may be referred to as “HH-Clar” structures, leaving
the symbol “HY-Clar” structures for the generalized
Clar structures of Hosoya and Yamaguchi.

Construction of HY-Clar structures is rather
straightforward. The selection of the subset of HH-
Clar structures requires some caution, but can be
accomplished also for smaller benzenoids by trial and
error. Construction of R-Clar structures also requires
considerable care, as it presumes a prior determina-
tion of df for individual Kekulé valence structures.
However, as outlined in ref 87, R-Clar structures can
be constructed from HH-Clar structures by identifi-
cation of the “vulnerable” π-sextets, which are the
sextets obtained by a superposition of Kekulé valence
structures having different degrees of freedom.

Table 50. Resonance Energies for a Set of Benzenoid
Hydrocarbons Based on the Canonical Set of Clar
Structures (As Reported by Herndon and Hosoya539)

compound Clar Kekulé RE(SCF) RE(VB) difference

benzene 1 2 0.869 0.859 0.010
naphthalene 2 3 1.323 1.325 -0.002
anthracene 3 4 1.600 1.606 -0.006
tetracene 4 5 1.822 1.819 0.003
pentacene 5 6 2.004 2.004 0.000
perylene 6 9 2.619 2.651 -0.032
zethrene 4 9 2.694 2.651 0.043
quarterrylene 4 81 5.309 5.302 0.007
acenaphthylene 16 3 1.335 1.325 0.010
fluoranthene 2 6 2.141 2.184 -0.043
phenanthrene 2 5 1.933 1.924 0.009
pyrene 3 6 2.098* 2.099* -0.001
benzo[c]phenanthrene 3 8 2.478 2.477 0.001
benz[a]anthracene 3 7 2.291 2.313 -0.022
chrysene 3 8 2.483 2.477 0.006
triphenylene 2 9 2.654 2.652 0.002
dibenz[a,c]anthracene 3 13 3.058 3.076 -0.018
dibenz[a,h]anthracene 3 12 2.948 2.958 -0.010
dibenz[a,j]anthracene 3 12 2.948 2.958 -0.010
benzo[a]pyrene 4 9 2.594* 2.579* 0.005
benzo[d]pyrene 3 11 2.853* 2.842* 0.011
benzo[ghi]perylene 5 14 3.128 3.098 0.030
coronene 7 20 3.524 3.516 0.008
benzo[1,4]bisanthene 11 30 3.862 3.902 -0.040
ovalene 15 50 4.539 4.526 0.013
biphenyl 1 4 1.699 1.718 -0.019
styrene 1 2 0.858 0.859 -0.001
trans-stilbene 1 4 1.712 1.718 -0.006

Det | Q - xI | ) 0

Figure 124. “Resonance Clar structures” for benzo[ghi]-
perylene, obtained by restricting the superposition of
Kekulé structures to valence structures having the same
degree of freedom.86,87
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F. Graphical Construction of Clar Structures

We will end this discussion of generalized Clar
structures by briefly outlining a graphical construc-
tion of Clar structures that has been recently re-
ported by Klavžar, Žigert, and Gutman.767 Clar
structures are drawn by inscribing circles signifying
the aromatic π-sextets in individual benzene rings
such that the structure has the maximal number of
rings, providing that no circles appear in adjacent
rings, and that all CC bonds not involved in aromatic
sextets are either CC double or CC single bonds. The
number of π-aromatic sextets in a benzenoid hydro-
carbon is an important structural invariant, which
is not readily available for larger benzenoid systems,
including large cata-condensed benzenoids. The
graphical approach of Klavžar et al. allows determi-
nation of the number of π-aromatic sextets. It is
illustrated in Figure 125 (top) on one of the ben-
zenoids which they considered. According to these
authors, the smallest number of line segments re-
quired to cross all benzene hexagons gives the
number of π-aromatic sextets.

The linearly fused benzenoids naphthalene, an-
thracene, tetracene, and so on are the only ben-
zenoids for which there is but one way of drawing
the line that crosses all the fused rings. For other
benzenoids there are more than two ways in which
the “crossing” lines can be drawn. Rather than
choosing the crossing lines arbitrarily, which suffices
to determine the number of π-aromatic sextets, we
advocate768 drawing the “crossing” lines so that they
result in the maximal number of crossings of the line
segments. This is the case with the diagram shown
on the bottom in Figure 125. From Figure 125 we
can see that, for this particular benzenoid, the eight
lines allow a maximum of five crossings of the line
segments, and as we will see, the number of crossings
corresponds to the number of “empty” rings in the
Clar structure for the benzenoid considered.

Let us point out that benzenoid isomers that differ
only in the orientation of linear branches at the
“kink” rings (i.e., the ring angularity fused to a linear
fragment) have the same sextet “crossing” numbers.
The smallest such case is that of chrysene and
benzphenanthrene, both of which are “covered” by
two non-crossing line segments. By not having “cross-
ing” of line segments, we immediately know that
benzphenanthrene has no “empty” rings. Benzenoid
isomers that differ only in the orientation of linear
branches at the “kink” rings have been referred to
as isoconjugate, or iso-Kekuléan, because there is a
one-to-one correspondence between their Kekulé
valence structures, which differ in spatial orientation
but have the same conjugated circuits count. Balaban
and Tomescu,769 in a paper on deriving algebraic
expressions for the number of Kekulé structures of
cata-condensed benzenoids, referred to these isomers
as isoarithmic. Such polycyclic hydrocarbons have
necessarily the same count of conjugated circuits not
only for a molecule as a whole, but also for individual
Kekulé valence structures. Živković, Klein, and
Schmalz770 define two molecular species as isoreso-
nant if both have like numbers of the same type of
bonds and there is an isomorphism between the
superposition of pairs of Kekulé structures giving
equivalent interaction patterns.

The reason that line segments should be drawn so
that the number of crossings of lines is maximal
follows from an observation that a benzene ring at
which line segments are crossing cannot be the site
of an aromatic π-sextet in a Clar structural formula.
This is evident from the fact that each benzene ring
along the line segment represents a possible site for
an aromatic π-sextet. When we place aromatic π-sex-
tets on those parts of two (or more) lines that do not
cross, we achieve the maximal number of aromatic
π-sextets. If we were to put aromatic π-sextets at the
benzene rings where two lines cross, we would place
one sextet on two lines, that is, one sextet less than
would be otherwise possible, thus violating the
requirements for the maximal number of aromatic
π-sextets imposed by Clar. It follows, then, that
benzene rings, which are the sites of crossing of lines,
are either the so-called “empty” rings or the rings
with fixed CC double bond assignment. Thus, once
we have drawn the diagrams with the smallest
number of lines that intersect every benzene ring and
have the maximal number of crossings, we in fact
have an alternative diagram for Clar structures of
benzenoids. All that one has to do is to place an
aromatic π-sextet in any of the rings that have no
crossing of lines (subject to the requirement that no
aromatic π-sextets can appear in adjacent rings). It
is also immediately clear that not only will ben-
zenoids without crossing of line segments necessarily
have “migrating” sextets, but the migrating sextet
can occur in every benzene ring of a molecule.
Migrating sextets will also appear in those ben-
zenoids having crossing of lines segments but also
having two or more linearly fused benzene rings
adjacent to any of the “crossed” ring. All this holds
for benzenoids having a unique Clar structure and
benzenoids having a unique “crossing” pattern. How-

Figure 125. Graphical method of Klavžar, Žigert, and
Gutman767 for determining the number of π-aromatic
sextets in cata-condensed benzenoids (top) and an alterna-
tive proposal by this author768 that indicates rings involving
π-aromatic sextets (bottom).
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ever, there are benzenoids that have two optimal
drawings. The smallest such case is that of picene
(five zigzag fused benzene rings) and the correspond-
ing iso-Kekuléan structures. In such cases, a benzene
ring that is the site of crossing in either of the two
structures should be considered “forbidden” for the
site of the aromatic π-sextets.

XXXIV. Fullerenes
A short review of fullerenes is in order, in view of

the underlying common structural features of all-
carbon and hydrocarbon compounds. Formally, by
disregarding the geometrical features of fullerenes
as 3-D cages, the main distinction between hydro-
carbons and fullerenes is that the former have
apparent 2-D “peripheral” features with hydrogens
playing an important role, while the latter, being of
closed polyhedral geometry, have no such 2-D pe-
riphery. If we focus attention to the interior parts of
both classes of compounds, then we find similar
structural elements making similar contributions.

The term “fullerene” was coined by H. Kroto771 for
families of unsaturated carbon compounds having a
polyhedral carbon skeleton consisting of 12 pentagons
and additional (n/2-10) hexagonal faces for which
one can draw Kekulé valence structures. For the
smallest structure satisfying the above conditions, a
regular dodecahedron, n ) 20, which thus has no
hexagons. Grünbaum772 has pointed out that poly-
hedra satisfying the above condition exist for n g 20,
except for n ) 22. Enumerations of fullerenes have
shown that the number of possible isomers grows fast
with n.721 Recently, Schmalz720 presented a valence
bond view of fullerenes in which he outlined the
resonance theoretic model of Herndon and the con-
jugated circuits approach as resonance models for
fullerenes. When one consider fullerenes, in view of
the enormous number of Kekulé valence structures
that these systems have, it is important immediately
to stress the necessity for novel and efficient graph
theoretical computational schemes for enumeration
not only of Kekulé valence structures (K) but also of
conjugated circuits of different size. Without such an
efficient tool, extension of the conjugated circuits
model to fullerenes would be not possible. Fortu-
nately, Klein and Liu516 have shown how one can
extract K and the number of conjugated circuits
without difficulty from a few minors of the adjacency
matrix of a molecular graph of fullerene. Thus,
perhaps quite unexpectedly, the adjacency matrix,
which played the central role in the HMO method,
again comes to the center of attention, this time in
relation to fullerenes! Thus, the conjugated circuits
model requires as input for computations only infor-
mation on carbon-carbon connectivity s the same
information that defines HMO computations. Accord-
ing to Schmalz, the conjugated circuits computations
“... are therefore an attractive complement to Hückel
calculations since, though also highly approximate,
they approach the solution from the opposite, highly
correlated, valence bond limit.” 720

We almost fully agree with this characterization,
except for the somewhat ambiguous label of “also
highly approximate”. Most chemists will agree that

Hückel MO calculations are highly approximate, but
an empirical approach such as the conjugated circuits
model is as much approximate as is the source method
on the basis of which the empirical parameters are
calculated. If one is to label Dewar and de Llano’s
SCF MO calculations of the PPP type and the Jiang
and Li VB calculations as “very approximate”, then
surely the same label describes the corresponding
results derived from the conjugated circuits model.
However, the calculations of Dewar and de Llano, as
well as the more recent calculations of Jiang and Li,
would be more correctly described as “advanced”
(particularly in comparison to the HMO method), and
hence less approximate. In fact, all calculations are
approximate, including ab initio calculations, such
as those using the Gaussian computational package,
but some are less approximate than others. Among
the less approximate calculations we find the VB
calculations of Jiang and co-workers and other exact
GUGA VB calculations.

In contrast, the conjugated circuits method gives
expressions for molecular resonance energy, and
these expressions can be postulated as representing
the definition of RE. Thus, there is nothing ap-
proximate, at the least “very approximate”, about the
conjugated circuits model, just as there is nothing
approximate, or very approximate, about the Schrö-
dinger equation, which has been postulated as the
basic equation of quantum theory. Of course, solu-
tions of the Schrödinger equation will be approximate
or very approximate, depending on the choice of
computational methodology, just as RE derived from
the expressions based on the count of conjugated
circuits will be approximate or very approximate,
depending on the choice of empirical parameters.
While thus, in a way, the Schrödinger equation and
the conjugated circuits model are on the same footing,
one should keep in mind that the conjugated circuits
model serves to help interpretation of some details
of the calculations of the Schrödinger equation when
applied to conjugated hydrocarbons! Hence, the Schrö-
dinger equation is the master, and the conjugated
circuits model is at best a servant. Our effort in this
review on the aromaticity of conjugated hydrocarbons
is to show that, when it comes to the aromaticity of
conjugated hydrocarbons, the conjugated circuits
model is not only a very good servant, but is also a
master-servant.

The chemistry of fullerenes appears to continue to
grow steadily. The aromaticity of fullerenes has been
reviewed in the recent issue of Chemical Reviews on
aromaticity in an article by M. Bühl and A. Hirsch,
entitled “Spherical Aromaticity of Fullerenes”.676 The
title immediately sends a message of unsuspected
novelty that has opened with the recognition of
buckminsterfullerene’s spherical structure, which as
Kroto suggested could be “the first example of a
spherical aromatic molecule.” 771 We will only supple-
ment this review by reporting on some aspects of
fullerene aromaticity as described by the conjugated
circuits model, as reflected in the works of Klein,
Schmalz, and co-workers.774-776 They performed con-
jugated circuits calculations on all isomers of buck-
minsterfullerene C60, a total of 1812 isomers. The
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largest RE belongs to buckminsterfullerene, which
is the only experimentally detected isomer. What is
unique among the 1812 isomers is that buckminster-
fullerene is the only isomer in which 12 pentagonal
faces are disjoint, and it is also the smallest fullerene
with “isolated” pentagons. In all other isomers, one
or more pentagonal faces are adjacent. This has led
Schmalz et al.777,778 to propose the “isolated pentagon
rule”, which states that preferable fullerenes avoid
geometrical forms in which pentagonal faces are
adjacent, the so-called “abutting pentagons”. Kroto771

has also pointed out that polyhedra with abutting
pentagons cause greater strain on the σ CC bonds.
The “isolated pentagon rule” 777-779 was proposed “in
light of the conjugated circuit analysis of resonance
energy, which shows that destabilizing conjugated
eight circuits develop around the periphery of any two
pentagons which have an edge.” 779 Hence, adjacent
pentagons are favored neither by σ bonding nor by π
bonding. In fact, ab initio calculations performed by
Cioslowski780 suggested that each pentagon-penta-
gon contact decreases the stability by approximately
1.5 eV (which is about twice the stabilization pro-
duced due to the presence of an additional conjugated
circuit R1). Hence, it is not surprising to see that
fullerenes with abutted pentagons are dif-
ficult to find, even though Pistoti et al.781 have
reported such in C36 fullerene.

Another interesting result of the analysis of
fullerenes via the conjugated circuits model by Liu,
Klein, and Schmalz518 concerns fullerenes having
from 60 to 100 carbon atoms, all having disjoint
pentagonal faces. The article contains results for 1812
“isolated pentagon” rule fullerenes of 180 atoms, each
a leap-frog of one of the 1812 C60 fullerenes. The leap-
frog transformation, in its chemical context as a way
of expanding fullerene frameworks to yield larger
cages with specific electronic structure, was intro-
duced by Folwer.782 Before we define the leap-frog
transformation, we will describe it on a transforma-
tion of dodecahedron to buckminsterfullerene. We
start with a regular dodecahedron having 20 vertices
which is built from 12 pentagons. We place at the
center of each pentagon a vertex and connect it to
the five vertices of the pentagonal face. In this way
we introduced 12 vertices of degree 5, while the 20
initial vertices of dodecahedron, instead of being of
degree 3, are now of degree 6. This operation is
referred to as capping, and when it is applied to all
faces of a polyhedron, it is referred to as omnicapping.
The resulting polyhedron, all faces of which are
triangles, is referred to as a deltahedron. Deltahedra
are of considerable interest in the chemistry of
polyhedral boranes and related molecules and graph
theoretical characterization of possible three-dimen-
sional aromaticity in boranes.783-787 The omnicapping
has transformed a dodecahedron having 12 faces to
a deltahedron which has 60 triangular faces. A dual
of this deltahedron produces the carbon skeleton of
buckminsterfullerene with 60 vertices, 12 pentagonal
faces (around vertices of degree 5), and 20 hexagonal
faces (around vertices of degree 6). Hence, by suc-
cessive application of (1) omnicapping and (2) dual-
ing, we obtained from dodecahedron a polyhedron

having 3 times more vertices. The process can be
repeated over and over again, which creates from a
fullerene having n vertices the next fullerene having
3n vertices. This process is referred to as leap-frog
transformation, being reminiscent of children’s play
of hopping one over another. Hence, leap-frogging can
be defined as follows:

Definition: A leap-frog transformation represents
omnicapping of a polyhedron followed by dualing,
which results in a novel polyhedron having 3 times
more vertices.

Thus, from buckminsterfullerene we obtain fullerene
having 180 vertices, then by repeating the process
we obtain fullerene having 540 vertices, and so on.

Despite a scatter of computed RE values for
fullerenes that did not offer a simple pattern Liu,
Klein, and Schmalz518 noticed that some fullerenes
appear to have visibly higher RE than others. Upon
inspection, they were able to characterize these
somewhat “unusually” stable fullerenes as those
structures for which one can draw Kekulé valence
structure such that every benzene ring has three CC
double bonds. In the case of benzenoid hydrocarbons,
this was the case with compounds having a dominant
(Fries) Kekulé valence structure, as shown in Figure
74 (except for benzo[a]pyrene and benzo[e]pyrene, for
which it is not possible to have all rings shown as
benzene Kekulé structures). Moreover, when one
excises the carbon atoms of the 12 pentagonal faces,
one obtains a collection of benzenoid fragments, all
of which would classify as “fully benzenoid” hydro-
carbons in the terminology of Clar. Liu, Klein, and
Schmalz518 refer to these unusually stable fullerenes
as the “Clar sextet fullerenes”. However, one should
not confuse “Clar sextet fullerenes” with Clar struc-
tures of fullerenes, to be discussed in the next section.

The smallest of the Clar sextet fullerenes is C60
buckminsterfullerene, which when all 12 pentagons
are removed leaves no fragments. As Schmalz pointed
out, C60 buckminsterfullerene can be viewed as the
first member of a family of the “Clar sextet fullerenes”
having (60 + 6n) carbon atoms, with n ) 2, 3, 4, ....
It is interesting to observe the appearance of Clar’s
6n π-electron rule in somewhat modified form. How-
ever, as Schmalz indicated, strain associated with σ
CC bonds also is important for the stability of higher
fullerenes, but the calculation of this strain appar-
ently remains unsolved. Actually, curvature match-
ing tells about this to a certain extent.721,722 Thus,
any speculation on the possible stability of higher
fullerenes based solely on structural features result-
ing from interacting π-electrons will remain for a
while s just an educated speculation.

Clar Structures of Buckminsterfullerene.

You know my methods. Apply them.
Conan Doyle723

Construction of Clar structures for fullerenes re-
quires one to identify locations of aromatic π-sextets
in a polycyclic structures having, besides benzene
rings, additional pentagonal non-benzene rings.
Clearly, only benzene rings could be the site of
aromatic π-sextets. In buckminsterfullerene C60,
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there are 20 hexagonal rings, and as Figure 126
shows, we can place over the Schlegel diagram of C60
at most eight π-sextets. Observe that this optimal
arrangement of aromatic π-sextets separates the
sextets by naphthalene groups. If one tries to place
sextets closer to each other to form locally the Clar
formula of triphenylene, one finds that such a dis-
tribution would result in seven, not eight, π-sextets.
Each local group of four π-sextets forms Clar struc-
ture for 1.2,7.8-dibenzochrysene, with the central CC
bond as double. The Clar structure shown in Figure
126 is one of five possible symmetry-related Clar
structures of C60; thus, all π-sextets in buckminster-
fullerene are in fact the migrating π-sextets. How-
ever, in contrast to most migrating π-sextets, which
can “move” independently, all eight π-sextets of C60
have to move synchronously, just as has been the case
with the three π-sextets of coronene.

A Clar structure with eight π-sextets requires 28,
or 256, Kekulé valence structures. Five such struc-
tures therefore require at most 5 times more, that
is, 1280. However, it is not difficult to see that each
of the five symmetry-related Clar structures will
contain, among those 256 valence structures, the
unique Fries structure of C60 in which all CC bonds
exocyclic to pentagonal faces are CC double bonds.
This reduces the number of participating Kekulé
valence structures to 1276 out of a possible 12 500
Kekulé structures of C60, that is, just slightly above
1%.

Flocke, Schmalz, and Klein788,789 reported on a
variational resonance valence bond study on the
ground state of C60 using the Heisenberg model. The
Heisenberg model represents a valence bond method
for π-electrons which includes electron correlation,
which can be solved on the basis of Kekulé valence
structures. This model, which consistently yields
about 90% of the exact ground-state energy, is
suitable for calculations on fullerenes. What is of
considerable interest is that these authors found that,
from the 12 500 Kekulé valence structures of buck-
minsterfullerene, a smaller set of 5828 valence
structures already gives 99.82% of the energy of the
full set of Kekulé structures. Hence, over half of all
Kekulé valence structures of C60 contribute about
0.18% toward molecular energy!

The subset of 5828 structures that formed the basis
for simplified calculations was selected by considering

benzene rings of the Fries structure of C60 shown on
the left in Figure 127 (which has 20 rings with
Kekulé valence structure) and Kekulé structures
obtained by rotating Kekulé benzene rings in disjoint
hexagons in all possible combinations. Recall that
this procedure in benzenoid hydrocarbons, as shown
by Gutman and Randić,209 would generate all Kekulé
valence structures, but only if all conjugated circuits
of different size were also considered. In the case of
C60, one obtains in this way only those Kekulé
structures of C60 which have in their rings either
three CC double bonds or two CC double bonds
separated by a single CC bond. For instance, one
cannot obtain in this way the anti-Fries structure of
C60 shown in Figure 127 on the right, in which there
are no hexagonal rings with three CC double bonds.
Observe that in this structure the innermost penta-
gon and the outermost pentagon are the only penta-
gons with five exocyclic CC double bonds. Hence,
there being 12 pentagons in C60, the anti-Fries
structure of buckminsterfullerene shown on the right
in Figure 127 is one of six such symmetry-equivalent
anti-Fries structures. Similarly, by rotation of CC
double bonds within various hexagons of the Fries
structure of buckminsterfullerene, one cannot obtain
Kekulé structures of C60 with two CC double bonds
separated by two CC single bonds, nor Kekulé
structures with hexagonal rings with a single CC
double bond or Kekulé structures with hexagonal
rings without a single CC double bond, that is,
hexagons with six exocyclic double CC bonds. The
number of these structures that cannot be obtained
by rotation of bonds within individual hexagons of
the Fries structure of C60 is apparently 6672.

The count of Kekulé structures which qualify as
contributing significantly to the computation of the
energy, as outlined by Klein et al.,788 can be simplified
by constructing a reduced dual of buckminster-
fullerene structure in which only the 20 hexagonal
rings are considered as vertices of a dual. In this dual,
each hexagon is represented by a vertex placed in
the center of the hexagon, and vertices belonging to
adjacent hexagons are connected. As a result, we
obtain the graph of dodecahedron (shown in Figure
128). The reduction of buckminsterfullerene to dodeca-
hedron can be viewed as an “anti” leap-frog trans-
formation, being the opposite (inverse) of the leap-
frog transformation. The count of structures generated
by simultaneously rotating m benzene rings of non-
adjacent hexagons (where m ) 0, 1, 2, ..., 8) is
tantamount to the count of possible ways of selecting
m vertices in dodecahedron so that no two are

Figure 126. Clar’s structure of buckminsterfullerene C60,
having eight (the maximal number) disjoint π-aromatic
sextets.

Figure 127. Fries and anti-Fries Kekulé valence struc-
tures of C60.
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adjacent. In Figure 128 we have indicated these
possibilities starting with the first dodecahedron that
corresponds to five possible Clar structures of buck-
minsterfullerne. When all the numbers in Figure 128
are added, we obtain 5828, the subset of Kekulé
structures which form the basis for the simplified
calculations of Klein et al.788

In graph theory, a subset of disjoint vertices is
known as an independent set of vertices:

Definition: A subset S of vertices V of a graph is
called an independent set of graph G if no two vertices
of S are adjacent in G.

Hence, Figure 128 at the same time illustrates for
all possible values of m a single independent set,
while the numbers under the dodecahedra give the
total number of independent sets for dodecahedron.
Thus, the construction and the count of independent
sets represents an alternative approach to selecting
the most important Kekulé valence structures of C60.
We may add that Gutman and El-Basil790,791 were the
first to recognize the relevance of independent sets
for the theory of generalized Clar structures.

As already mentioned, finding all Clar structures
in larger benzenoids,792-795 such as the benzenoids
of Müllen and co-workers, as well as fullerenes,
requires some effort. A procedure for constructing
such Clar structures for large benzenoids has been
outlined792 and is illustrated in Figure 129 on hexa-
benzocoronene. It starts with a single Clar structure,
like the first Clar structure shown in Figure 129, and
considers all possible “moves” for π-sextets on the

“board” of fused hexagons representing the carbon
skeleton of the benzenoid. We have shown only
symmetry-non-equivalent patterns of π-sextets.

Flocke et al. have pointed out that, in the terminol-
ogy of VB calculations, the subset of 5828 Kekulé
structures “has the important property that each
Kekulé function in it may be chosen with a sign such
that it has positive overlap with all other functions”
of the subset.788 In this way the selected Kekulé
structures enter the ground-state wave function with
positive coefficients. This can always be done for
alternants, but need not follow for non-alternants,
“and indeed cannot be done for the full set K of
C60.” 788 Flocke et al. summarized their result by
stating that the Kekulé basis of C60 could be sepa-
rated naturally into two sets, the dominant set of
5828 Kekulé structures and the not so important set
of 6672 Kekulé structures, suggesting that the reso-
nance theoretic ideas developed for organic hydro-
carbons could work for fullerenes as well. In simple
language, this indicates that the concept of the
aromatic sextet plays an important role in C60. In
view of this important classification of Kekulé struc-
tures of fullerenes (and other non-alternant conju-
gated systems) into major and minor groups, it seems
fitting to give to these two groups appropriate names,
and we suggest that the first be referred to as the
“generalized Clar structures” of fullerenes, while the
second group can be referred to, in analogy with anti-
Fries structures of benzenoids, as the “anti-Clar
structures” of fullerenes, and in general non-alter-
nant non-benzenoids.

It is clear that by rotating CC double and single
bonds within the benzene hexagons of the Fries
structure, the number of aromatic π-sextets remains
the same, but the number of R1 conjugated circuits,
which in the case of the Fries structure of C60 is 20,
may vary considerably among different Kekulé struc-
tures. By rotating CC bonds in a single hexagon of
the Fries structure of C60, the number of R1 conju-
gated circuits is already reduced by 3. The calcula-
tions made by Flocke et al.788 on buckminster-
fullerene, which have shown that not all Kekulé
structures make an important contribution to mo-
lecular energy, suggest that the next VB study of
interest may be one in which calculations of contri-
butions to the molecular energy are restricted solely
to Clar structure (those 1276 structures), a subset of

Figure 128. The dual of the hexagonal faces of the
buckminsterfullerene structure and the count of Kekulé
structures obtained by rotation of the CC double and CC
single bonds within a single benzene ring of the Fries
structure of C60 shown in Figure 127.

Figure 129. The five symmetry-unrelated Clar structures
of hexabenzocoronene.
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the subset of generalized Clar structures. Clar struc-
tures may not suffice to give satisfactory molecular
energy but are expected to give satisfactory resonance
energy, which is the quantity of interest in charac-
terization of the degree of aromaticity of organic
compounds. Accurate VB calculations, such as those
of Klein et al. based on the Heisenberg Hamiltonian
framework, and also those calculations of Jiang and
collaborators mentioned earlier, may offer some
insights into the role of Clar structures and general-
ized Clar structures, that is, the Clar structures with
the lesser number of aromatic π-sextets, in the
estimation of molecular RE. Equally, it seems of
interest to revisit benzenoid hydrocarbons and apply
the same methodology to the subset of Kekulé valence
structures defined by the procedure that starts with
the Fries structure and considers rotations of CC
bonds within different sextet rings analogous to those
described by Flocke et al. on C60.

We have presented so far the Clar structure for a
single fullerene, C60, which as we have seen is not
unique, there being five symmetry-equivalent such
structures. A fullerene that has a unique Clar
structure in which all carbon atoms are spanned by
π-sextets has been referred to as “a perfect Clar
structure” by Fowler and Pisanski.796 Hence, “perfect
Clar structure” for polyhedral graphs is one in which
all carbon atoms belong to one of numerous π-aro-
matic sextets, no two aromatic π-sextets are adjacent,
and no CC bonds appear as CdC double bonds. For
fullerenes this means that all pentagonal faces are
necessarily “empty” faces, and in addition a number
of hexagonal faces are also “empty”, analogous to the
case of the “fully benzenoid” hydrocarbons of Clar.
According to a theorem of Folwer and Pisanski, “A
trivalent polyhedral graph has perfect Clar structure
if and only if it has a Fries structure.” 796

This theorem is interesting in that it combines the
almost forgotten Fries structures with the leap-frog
transformation in extending characterization of larger
fullerenes on the basis of smaller ones. As Dias has
shown,797 leap-frogging, although initially designed
as an operation on fullerenes, can also be applied to
benzenoid hydrocarbons. In such cases, only the
internal faces are capped and instead of duals, only
the so-called inner dual is considered (which excludes
the exterior of the benzenoid to be viewed as a face).
Leap-frogging of a benzenoid in this way always
generates “fully benzenoid” hydrocarbons, but the
reverse need not hold: not every fully benzenoid
hydrocarbon is a leap-frog. According to Fowler and
Pisanski, in the case of fullerenes, all Clar fullerenes
are leap-frogs. These authors came up with a number
of interesting propositions concerning fullerenes and
more general Clar type polyhedra (or maps), which
are defined as a collection of faces whose boundaries
form a 2-factor of a map. This means that one can
select a set of faces which are disjoint and which
cover all vertices of the map. For such polyhedra the
following propositions (or theorems) are true:

Proposition 1: A trivalent polyhedral graph has a
perfect Clar structure if and only if it has Fries
structure.

Proposition 2: If a trivalent map has perfect Clar
structure, then all odd faces belong to it.
Proposition 3: Each trivalent map with odd faces
has at most one perfect Clar structure.
Proposition 4: For a trivalent map, any two perfect
Clar structures either completely coincide or have no
face in common.
Proposition 5: If a trivalent map has two odd faces
sharing an edge, then such a map does not have a
perfect Clar structure.

The main reason to mention perfect Clar structures
is to draw the attention of readers to different
definitions used here by Fowler and Pisanski, differ-
ent classifications of Clar cages by Flocke, Schmalz,
and Klein,788,789 and different definitions of Clar
structures of fullerenes as we have outlined at the
beginning of this section. Upon closer examination,
we expect readers to agree that our approach is the
only one that truly extends the spirit of the π-aro-
matic sextets of Clar from benzenoid hydrocarbons
to fullerenes. That does not make the alternative
approaches, which are equally legitimate, less wor-
thy, as each of them serves its own purposes s but
readers should be alerted in advance and should be
spared possible confusion due to use and promotion
of the name of Clar in several different conceptual
connections. Observe that in our definition of the Clar
structure of fullerene, only hexagonal faces can be
the site of aromatic π-sextets, but that is not the case
in the approach of Fowler and Pisanski, where
pentagonal faces play a role similar to that of
hexagonal faces.

XXXV. Challenges and Unsolved Problems
... the discovery by Thiele in 1900 of the cyclo-
pentadienide anion was a remarkable seed, the
descendants of which continue to produce good
crop .... The remarkable stability of the C5H5

-

ion with its six π-electrons has been abundantly
considered one of the large blocks supporting the
theory.

W. von E. Doering798 (See ref 200 in this
review for a citation of Thiele’s work.)

If a reader got an impression after coming to the
end of this review that concerning aromaticity, at
least in the case of polycyclic conjugated hydrocar-
bons, things have now been settled, then I must have
failed in not sufficiently emphatically stressing nu-
merous challenges, theoretically unsettled topics, and
open problems.

A. Challenges
(1) We have considered here only neutral conju-

gated hydrocarbons, leaving out charged polycyclic
conjugated ions as well as heterocyclic conjugated
cyclic and polycyclic compounds. Charged polycyclic
conjugated ions and heterocyclic conjugated com-
pounds are beyond the scope of this review. If one
were to extend the present considerations to such
systems with a desire to arrive at quantitative rather
than merely qualitative results, one would need good-
quality quantum chemical results for numerous
compounds which are currently not available. Aro-
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maticity of charged polycyclic conjugated ions and
heterocyclic conjugated cyclic and polycyclic com-
pounds presents a challenge that should be taken up.
Let us only mention that some exploratory graph
theoretical studies799-804 have been reported on
charged polycyclic conjugated ions and heterocyclic
conjugated cyclic compounds, polycyclic compounds,
and radicals.

In comparison with calculations on benzenoids and
a selection of non-benzenoids, the major disadvantage
of extending the approach of conjugated circuits to
charged molecules is the occurrence of a large num-
ber of “ionic” Kekulé structures that need to be
analyzed. For example, the cation described by M.
S. Newman,805 having 20 π-electrons, of which 14
form a peripheral ring and 6 contribute to the
π-electron inner ring, has 90 ionic Kekulé valence
structures. 799 This can be compared with the number
of Kekulé valence structures of neutral benzenoids
of a similar size, which is at most 20 (e.g., coronene).
In addition, it is needless to say that such extensions
would require their own (reliable) parametrization
in order to produce acceptable RE values, and we may
add that no such reliable parametrization is available
today.

(2) A relatively reliable estimate of RE for non-
benzenoid compounds is needed. One way to arrive
at such an estimate is to perform quantum chemical
calculations of higher quality (not necessarily of ab
initio type) for two dozen non-benzenoid compounds.
The challenge here for theoretical chemistry is not
so much in making quantum chemical calculations
as such, but in being able to extract from such
calculations an inherently consistent non-observable,
known as RE. This would then facilitate parametri-
zation of contributions of 4n conjugated circuits.
Individual calculations, especially made on a few
molecules and with different assumptions, as we have
seen already in the case of benzenoid systems when
using conjugated circuits for diagnostic purposes,
may yield internally inconsistent parametrization.

(3) We consider it a challenge to extend the ap-
proach of Polansky and Derflinger582 to obtain con-
tributions of MO’s in different conjugated circuits.
The first stage of this problem could be just to
consider benzene rings (i.e., conjugated circuits R1)
and then make some analogy with the work of Ham,
Ruedenberg, and Platt171-173 when relating Coulson
MO bond orders with Pauling bond orders. For
example, following Polansky and Derflinger,582 one
obtains MO contributions to individual benzene rings
of polycyclic systems by using the corresponding
benzene orbitals instead of atomic orbitals. If one
would divide such contributions by the orbital eigen-
value, one may get a VB equivalent of Polansky and
Derflinger’s MO ring indices.

(4) Finding conjugated circuits and enumerating
linearly independent conjugated circuits in benzenoid
hydrocarbons is not so difficult, but this need not be
the case with non-benzenoid hydrocarbons. Consider,
for example, the two non-benzenoids structures 9/89
and 10/89 shown in Figure 85, which have only 9 and
14 Kekulé structures, respectively. While finding all
Kekulé structures is rather simple, finding all con-

jugated circuits (8 in the case of 9/89 and 13 in the
case of 10/89) requires some attention, and finally
finding which conjugated circuits make a linearly
independent set is even harder. We illustrate in
Figure 130 decomposition of one of the 14 Kekulé
structures of 10/89 into conjugated circuits, which we
labeled A-M. We know that among the 13 diagrams
there are 9 linearly independent conjugated circuits,
but it may take some effort to establish the combina-
tions that produce, upon superposition, the same
conjugated circuits. It is apparent that L ) A + B and
M ) C + D, but we also have E + F ) C + G and
J + K ) M + L, which is not necessarily so readily
visible. To find an efficient algorithm that will search
among possible combinations of circuits, those that
are linearly dependent combinations may present a
challenge, though advantage may be gained here by
adopting some techniques known in chemical docu-
mentation relating to SSSR (the search for the
smallest set of smallest rings).

(5) Following the work of Klein and collaborators
on “preferred” Kekulé valence structures in fullerenes,
which has shown that about 50% of well-selected
Kekulé valence structures can account for approxi-
mately 99% of the molecular energy, it seems very
desirable to extend such calculations to benzenoid as
well as non-benzenoid hydrocarbons in order to find
if similar results could be obtained. The “preferred”
structures (which can be generated from the Fries
structures of such molecules) appear to represent a
model that is “half-way” between the standard use
of all Kekulé valence structures and Clar’s π-aromatic
sextet model.

B. Unsolved Problems
(1) While there are several standard quantum

chemical methodologies to obtain reasonably accurate
wave functions and total molecular energy, there is
no standard scheme available yet to obtain molecular
resonance energy (RE). For characterization of aro-
maticity, it is essential to obtain a reasonably ac-
curate ansatz for RE. For example, there is no doubt
that the VB calculations of Alexander and Schmalz39

and Jiang and co-workers37,38 are of high accuracy
concerning the total molecular energy, but the same
calculations may, at least in some molecules, lead to
different RE values if different scheme for calculation
of RE are considered. Is there a preferred scheme,
and if so, what is it?

(2) Can more elaborate VB calculations (those that
are above the resonance theory of Herndon in the
diagram shown in Figure 50, which represents the
hierarchical relationship between different VB mod-
els according to Klein et al.7,534) be cast in an
alternative but mathematically equivalent formalism
based on the decomposition of Kekulé valence struc-
tures in conjugated circuits, rather than using Kekulé
valence structures?

(3) As outlined by this author and collaborators,806

one can consider and enumerate conjugated circuits
in valence structures of “higher degree of excitation”
(as referred to by G. Wheland129) for polycyclic
conjugated hydrocarbons. Besides the fact that such
enumerations are rather tedious and error prone
when made by examination of individual excited
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valence structures, the number of excited structures
is given by Catalan numbers and increases fast (as
mentioned earlier in the sections Valence Bond
Theory Versus Molecular Orbital Theory and Ben-
zenoid Hydrocarbons Revisited and in GUGA ac-
curate VB calculations). However, currently there is
no known algorithm that would make it possible to
delegate enumeration of conjugated circles in excited
structures to computers, which would be very desir-
able.

(4) Construction of Kekulé valence structures for
non-benzenoid hydrocarbons is straightforward, as
it can be performed by using or modifying the existing
algorithms that are valid for polycyclic benzenoid
systems. However, enumeration of conjugated cir-
cuits in such systems is already more demanding.
Even more tedious is finding combinations of conju-
gated circuits that are linearly dependent. Theoreti-
cally, this can be accomplished by using the exclusive/
or command that has been useful in finding the set
of smallest independent rings in polycyclic systems,
but a procedure that would implant this specifically
for conjugated circuits remains yet to be proposed. A
related and possibly even more difficult task is to find
a procedure to establish the degree of freedom of
individual Kekulé valence structures in larger non-
benzenoid polycyclic conjugated compounds. Solving
this problem will, for example, facilitate construction
of Clar sextet structures for fullerenes. In the case
of benzenoids, we have seen that df is given by the
largest number of disjoint conjugated circuits. This
is, however, not the case for non-benzenoids. For
example, the Kekulé structure shown in Figure 130

has at most two disjoint conjugated circuits but df )
3.

(5) As mentioned in the text, on a few occasions it
is desirable to obtain better values for graph theo-
retical parameters Rn and Qn, corresponding to the
contributions of 4n + 2 and 4n conjugated circuits
toward molecular RE, respectively. Equally it is
desirable to obtain values for graph theoretical
parameters Rn* and Qn*, corresponding to the con-
tributions of 4n + 2 and 4n conjugated circuits to-
ward molecular RE when only Kekulé valence struc-
tures of the maximal degree of freedom are used as
the basis for evaluating molecular RE.

XXXVI. Concluding Remarks
... a new scientific truth does not triumph by
convincing its opponents and making them see
the light, but rather because its opponents
eventually die, and a new generation grows up
that is familiar with it ...

Max Planck674

Extension of the conjugated circuits model to both
ions and heteroconjugated systems has to await
calculations from other sources. The challenge, hence,
is presented to theoretical quantum chemists to rise
to the occasion and offer very reliable computations
on molecules of interest that could serve as standards
for parametrization of various graph theoretical
quantities. Assuming that such calculations are
available (and some have been available), the chal-
lenge is in partitioning computed quantities and
arriving at RE in a way analogous to the earlier work
of Dewar and de Llano. Such work will no doubt bring

Figure 130. Decomposition of a Kekulé structure of a larger non-benzenoid into conjugated circuits.
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again discussions of how to extract from computed
data a non-observable quantity such as RE. But
theoretical chemists have in the past manipulated
various non-observables (e.g., bond orders, bond
dipoles, atomic charges, atom-bond polarizabilities,
etc.), so there is no reason not to re-examine alterna-
tive routes to RE.

Indeed, we have been consumed in this review with
hydrocarbons, as if other kinds of molecules do not
exist. But to repeat what was stated at the beginning,
the reason for such “limited” concern is the belief that
unless and until we all agree on what is aromaticity
for hydrocarbons, we are not likely to agree on more
complex systems, such as conjugated ions and het-
eroconjugated systems. It is not that this author and
others involved in the development of graph theoreti-
cal approaches to chemistry have been so much
infatuated with hydrocarbons, but one may say that
hydrocarbons offer enough diversity and enough
material where one can test new “tools”. This “pre-
occupation” with hydrocarbons may have led to an
impression that chemical graph theory is limited to
hydrocarbons and cannot be extended beyond hydro-
carbons. This is not correct, even though occasionally
we in chemical graph theory were “accused” of giving
preference to hydrocarbons, which comprise hardly
1% of chemistry. What has been overlooked is that
chemical graph theory has made and is making
important conceptual advances in tracing structural
factors responsible for specific molecular properties.

In summary, one can say that chemical graph
theory has an outstanding past, a rich present, and
a promising future, despite past, present, and pos-
sibly future misunderstanding. As E. B. Wilson
pointed out, concerning “novel” disciplines:208

The most rewarding work is usually to explore
a hitherto untouched field. These are not easy
to find today. However, every once in a while
some new theory or new experimental method or
apparatus makes it possible to enter a new
domain. Sometimes it is obvious to all that this
opportunity has arisen, but in other cases rec-
ognition of the opportunity requires more imagi-
nation.

Chemical graph theory, strictly speaking, is not a
hitherto untouched field, but there have been too few
willing to travel its uncharted paths. On this note,
which implies that advances in computational chem-
istry alone are not enough for progress, not only in
chemistry but also in theoretical chemistry, and that
conceptual aspects of modeling are at least as impor-
tant, we end this provocative review on aromaticity
expecting anger and pleasure to be mixed in the
minds of readers, hopefully more pleasure than
anger.

XXXVII. Epilogue

If a man does not keep a pace with his compan-
ions, perhaps it is because he hears a different
drummer. Let him step to the music he hears,
however measured or far away.

Henry D. Thoreau807

We started this review with a brief discussion of
some apparent dilemmas that we face in chemistry:
qualitative versus quantitative approaches, observ-
ables versus non-observables, structural criteria
versus properties as criteria for characterization of
aromaticity, chemical graph theory versus quantum
chemistry, Clar 6n rule versus Hückel 4n + 2 rule,
and hydrocarbons versus heteroatomic systems. As
we have seen, most of the mentioned dilemmas are
man-made and reflect inbred biases of different
circles of chemists. It is not uncommon to come across
critics with strong opinions and weak arguments, and
it would be a waste of time to try to point out to them
“the other side of the coin”. Max Planck apparently
experienced difficult times before his quantum con-
stant was accepted, as is reflected in the following
quotations:674

A new truth always has to contend with many
difficulties; if it were not so, it would have been
discovered much sooner.

... a new scientific truth does not triumph by
convincing its opponents and making them see
the light, but rather because its opponents
eventually die, and a new generation grows up
that is familiar with it ...
As we have seen, Planck has been vindicated. It is

my expectation that Clar’s views will be similarly
vindicated. It is not that Clar does not have followers,
because as we have seen he does. The criticism is
more directed to theoretical chemists, and to be more
precise to theoretical quantum chemists, rather than
to experimentalists. Appalling is the indifference that
theoretical chemists have shown toward Clar’s em-
pirical ideas on some aspects of the structure of
benzenoid hydrocarbons. If Clar is wrong, the why
do we not see arguments that show that this is the
case? If Clar is not wrong, then why we do not see
arguments that support his “case”?

We have arguments based on theoretical consid-
erations that support Clar’s π-aromatic sextet model,
such as those based on computed ring RE. An
additional argument followed from the analysis of
computer RE by Jiang and Li. Finally, an examina-
tion of biphenylene derivatives strongly supports that
Clar’s model can be extended to non-benzenoids.
However, there are additional experimental data that
strongly support Clar’s model. The fact that bent [n]-
phenylenes are stable is one such strong argument.
In addition, we may mention data on the triplet zero-
field-splitting parameters for aromatic hydrocarbons
which have been successfully interpreted in terms of
local benzenoid characteristics by Voitländer, Bräuch-
le, and co-workers.808,809

Apparently, there is yet another dilemma that
confronts chemistry: modeling versus non-modeling.
Models are, by definition, based on selective ap-
proximations, while in contrast non-modeling in our
context is represented by ab initio calculations. That
ab initio calculations have merits is well known. See
Table 51 for an overview of the evolution of Gaussian
computations as advertised in the mid-1990s by
Gaussian, Inc. (Pittsburgh, PA). Even a laic who may
not appreciate the high level of computations will be
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impressed. But there is also “the other side of the
coin” that is worth observing. Because few have the
courage to look in the “wrong” direction, to hear a
different tune, it is not surprising that many theo-
retical chemists are not aware that numerous con-
cepts used in quantum chemistry are in fact of graph
theoretical origin. That is, they are fully defined
solely from considerations of topological and combi-
natorial properties of molecules!

A. Quantum Chemical and Graph Theoretical
Analysis of [n]Phenylenes

To calculate a molecule is not to understand a
molecule.

R. G. Parr810

From much empirical experience, a little simple
theory, chemists have gained much intuitive
knowledge of the what, how, and why molecules
hold together. To put it provocatively as I can,
our physicist friends know better than we how
to calculate the electronic structure of a molecule
or solid, but often they do not understand it as
well as we do ...

R. Hoffmann811

The other illustration that we would like to cite
concerns properties of biphenylene and several struc-
turally related compounds. By using a semi-empirical
AM1 approach, Kovaček and collaborators743 included
naphthalene as a reference molecule in their study.
We would like to comment briefly on their discussion
of naphthalene and bent [3]phenylene. Their calcula-
tion of CC bonds in naphthalene agrees well with
available experimental data reported by Brock and
Dunitz812 that show slightly increased CC double
bond character for bond 1,2. This is how the authors
comment on that:743

It is interesting to note that naphthalene can be
considered as a fused system composed of two
annelated benzenes. Since the bond angles are
very close to 120°, there is no significant angular
strain involved in this molecule. Hence the
distance variations in 1 [naphthalene] is entirely
due to interactions between π-electrons. If one
benzene is considered as the original π-electron
aromatic sextet, then perturbation exerted by the
additional four electrons results in shifting the
π-density to a peripheral part of benzene thus
forming a cis-1,3-butadiene-like fragment as
evidenced by the π-bond orders. The choice of one
ring as benzene and the other as perturbation
caused by annelation is of course arbitrary and
one could do it the other way round. Conse-
quently, the whole picture is symmetric relative
to the mirror plane passing through the central
atoms ...

The reason for citing this lengthy section on
naphthalene is to point out that all that is said above
could be said in a much shorter way by simply
presenting the Clar structure of naphthalene, which
has a single π-aromatic sextet, that can “migrate”
from one ring to another. But there is no mention of
Clar in this work, even though the concept of the

π-sextet has been explicitly referred to! There is also
no mention of Fries structure, even though it was
depicted. Finally, there is no mention of Pauling bond
orders, which account for the major aspects of varia-
tions of CC bonds in naphthalene. This all could be
deliberate or accidental, but it illustrates a lack of
familiarity among some theoretical chemists with the
basic ideas of chemical graph theory. The Clar
structures, the Fries structure, and the Pauling bond
orders are all intimately connected to combinatorial
and topological properties of molecules s and can be
thus obtained from molecular graphs without AM1
computations! The results of the particular calcula-
tions are nevertheless useful beyond the apparent
intentions of the authors, because the agreement of
AM1 calculations on naphthalene with the charac-
terization of naphthalene as given by graph theoreti-
cal analysis clearly points to the ability of the AM1
method of Dewar to correctly account for some
combinatorial and topological properties of benzenoid
hydrocarbons. We have seen earlier in this review
that a number of semi-empirical MO theories failed
in this respect (see Table 31).

There is one additional point to be raised in
connection with this paper, in which, after naphtha-
lene, biphenylene and [3]phenylenes were studied.
After a detailed analysis of the strain and re-
hybridization caused by the presence of fused four-
member rings in biphenylenes, the authors found
bent [3]phenylene was slightly more stable than
linear [3]phenylenes. The decomposition of these
compounds in conjugated circuits (Table 35) shows
that RE (when based on all Kekulé valence struc-
tures) is larger for linearly fused [n]phenylenes in
comparison with angularly fused isomers. This “dis-
agreement” between the two approaches is thus
characterized:743

Competitive interactions between the increase in
aromaticity and the decrease in angular strain
and antiaromaticity in fused planar systems
provide an interesting challenge for future in-
vestigations.

As a corollary one can reiterate once again a
caveat against the uncritical use of graph-
theoretical indices in estimating aromaticity in
general and the application of the “conjugated
circuit” model in particular. The latter yields
incorrect results even for π-electrons in planar
systems involving fused six- and four-membered
rings and the important role of the σ-electrons
is completely neglected.

One may wonder who is being uncritical, who is
using graph theoretical models uncritically. Those
who are trying to find contributions to RE due to
π-electron interactions? Or those who are extending
graph theoretical concepts to situations for which
they were not intended? Surely, the overall stability
of strained structures will depend among others also
on the strain energy, whether it is cyclopropane,
biphenylene derivatives, or fullerenes. An estimate
of strain energy, molecular geometry, bond lengths,
and bond angles is within the realm of quantum
chemistry. Numerical calculations of molecular en-
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ergy are also in the domain of quantum chemistry.
But calculations of molecular RE are always model-
dependent. Conjugated circuits offer for polycyclic
conjugated compounds one such model based on
additive properties of RE that has been totally
unknown to quantum chemists, a model that is
clearly beyond the first principles of quantum me-
chanics. This model is suitable for VB calculations
but is not the only graph theoretical model for
calculation of RE. TRE described by Trinajstić and
Aihara is related to calculations of RE from MO
calculations. What models for RE are available from
quantum chemistry circles? Graph theoretical con-
siderations have led to the additivity of RE in terms
of conjugated circuits s a concept unknown in tra-
ditional quantum chemistry. In this connection it
may be mentioned that the Pauling bond orders,
although first found in the early quantum chemical
calculations, nevertheless are conceptually pure graph
theoretical quantities. This is one of many facts
pertaining to graph theory that many quantum
chemists are not aware of. Hence, the dilemma is not
quantum chemistry or graph theory, as some would
like to simplistically ask in considering occasional
disagreements in the predictions of different models,
but the answer is quantum chemistry and graph
theory. The disagreements between different models
should not be overlooked but should properly be
interpreted within the particular molecular models.
The finding by Kovaček et al.743 that the conjugated
circuits model failed to proper predict the relative
stability of linear and bent [3]phenylenes may indi-
cate either (1) that additional structural factors
beyond graph theory are responsible for the stability
in these molecules or (2) that not all Kekulé struc-
tures used in computation of RE make equal contri-
butions.

Kovaček et al. may have been successful in pointing
out that re-hybridization and the strain associated
with the presence of the four-member rings are such
important factors. However, their concluding remark,
“The oversimplified graph-theoretical approach based
on ‘conjugated circuits’ fails completely” in reproduc-
ing the relative stability of linear and bent [3]-
phenelyne, is not in order. Resonance energy makes
but a contribution to the stability of [n]phenylenes.
Hence, the prediction that bent [3]phenylene is more
stable than linear [3]phenylene, if this indeed is the
case, does not reflect limitations of the conjugated
circuits model. It rather illustrates a failure of those

making such claims to keep track of the basic
premises of distinct mathematical models of chemical
structure. Kovaček et al. failed to recognize that
graph theory is concerned with topological and com-
binatorial properties of molecular structure. Molec-
ular resonance energy, as the model of conjugated
circuits has shown, has combinatorial and topological
origin, and hence regularities in RE can thus be
illuminated by the conjugated circuits approach.
Variations in hybridization and variations in molec-
ular geometry are sensitive to molecular overall
energy, and as such are outside the domain of
chemical graph theory.

Trying to blame a model for not achieving a goal
that is outside its domain is, according to Damer,91

a reflection of “faulty reasoning”. As Damer has
pointed out, “neglect of relevant evidence” and “as-
signment of irrelevant goals” are among frequent
errors in reasoning. The first usually appears in
arguments that ignore the importance of evidence
unfavorable to one’s position. The second appears as
a “criticism” of a program because it does not achieve
goals that it was not designed to achieve. To view
graph theoretical models as “oversimplified” or “primi-
tive” reflects rather an unfamiliarity of some chem-
ists with the complexities accompanying combinato-
rial and topological properties of chemical structures.
It may also reflect ignorance and a lack of the
imagination that is required if one is to bridge the
gap between “traditional” and “innovative” modeling
in chemistry. Recall the quotation of Wilson:208

... every once in a while some new theory-
... makes it possible to enter a new domain.
Sometimes it is obvious to all that this op-
portunity has arisen, but in other cases recogni-
tion of the opportunity requires more imagina-
tion.

It is fitting to end these misunderstandings about
the role of graph theory in chemistry by citing a
statement made by the late Professor Hirschfelder,813

found in his book entitled My Adventures in Theoreti-
cal Chemistry:

Unfortunately, now there are too few theoretical
chemists with sufficient vision to take a giant
step of exploring completely new techniques.
Instead, scientists in the 1980s get so immersed
in a maze of computational detail that they lose
sight of the simple, elegant theories.

Table 51. Development of Computational Capabilities of the ab Initio Commercial Computer Package Gaussian
from 1980 to 1994a

Gaussian 80 Gaussian 82 Gaussian 86 Gaussian 88
numerical SCF analytic SCF IR and Raman intensities multiple moments
SCF minima numeric MP2 polarization electron density
MP2 + MP3 + CI MP4 hyperpolarization direct SCF energies and gradients
HF stability

Gaussian 90 Gaussian 92 Gaussian 94
excited states Onsager solvent effects Kohn-Sham stabilities
reaction paths 3-D electrostatic potential MNR shielding tensors
direct SCF frequencies semi-direct MP4 electron affinities
direct MP2 energies cavity solvent effects

analytic excited states
a The Gaussian programs are produced by Gaussian Inc., Pittsburgh, PA.
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B. Clar Structures for Non-benzenoid
Hydrocarbons

Too often scientists ignore the work of others.
R. G. Parr810

Here we will briefly advocate extension of Clar
formulas to biphenylene derivatives. However, we
ought to point out that Clar himself already viewed
biphenylene as a non-benzenoid with two aromatic
π-sextets.814 He also briefly discussed linear and bent
derivatives of biphenylene, compounds 2-6 illus-
trated in Figure 66, in which there are migrating
π-sextets within annealed naphthalene moieties.
According to Clar,814 “the central four-membered ring
is not completely void of p-electrons. There are indica-
tions of a weak ring current in this ring.” Clar cites
here the works of Katritzky and Reavill,815 and Jones
and Grant.816 In continuation, he stated: “There is
also some degree of aromatic conjugation through this
ring because an annellation effect can be recorded in
the electronic spectra for the series 1/66, 2/66 and 4/66
as shown by the shift of the â bands. This effect is
bigger in the series 1/66, 3/66 and 6/66. In accordance
with this latter hydrocarbons are more reactive then
the linear ones.” (Numbers have been changed to
correspond to the numbering in the current review.)
Clar cites here the works of Cava and Napier,817 and
Cava and Stucker.818 Clar then points out that “This
is in contrast to the acene series. These shifts are small
by comparison with the acene and phene series.” 814

Thus, Clar already had idea of extending the model
of aromatic sextet to non-benzeneoid. We hope here
to briefly add arguments that support Clar’s inten-
tions. Observe that the above qualitative character-
ization of linear and bent biphenylene derivatives
parallels the conclusions based on conjugated circuits,
which also predict linear biphenylene derivatives to
be less reactive (“in contrast to acene series”).

Let us use the “criticism” on the conjugated circuits
model by Kovaček et al. to point out how inadvert-
ently, and most likely against the desire of the
authors, this particular calculation on [3]phenylenes
offers significant support for Clar’s π-aromatic sextet
and the model of conjugated circuits, particularly
when applied to non-benzenoid derivatives of biphen-
ylene. What in fact these authors have shown is that
essentially the bent and the linear [3]phenylene have
approximately the same relative stability. If we now
wish to extend the Clar’s notions on aromatic π-sex-
tets to non-benzenoid derivatives of biphenylene, we
have to ignore the Kekulé valence structures of low
degrees of freedom. But, as we have discussed in
section XXXII.B, Biphenylenes Revisited, in such
situations all isomers of [n]phenylene have the same
RE. Hence, both the linear and the bent [3]phenylene
are predicted by Clar’s model and the conjugated
circuits model to have approximately the same stabil-
ity. Since the changes due to re-hybridization and the
strain due to bent bonds associated with four-member
rings can be assumed to be approximately the same
in linear and bent [n]phenylenes, we may interpret
the results of Kovaček et al. as an independent
quantum chemically based support that suggests
that, indeed, the Clar formalism may be extended to

non-benzenoids, biphenylene derivatives in particu-
lar. This is a welcome result that we hope will be
confirmed by even more rigorous calculations in the
future.

As we have seen from the above discussion of bent
[n]phenylenes, the fact that a quantum chemical
calculation suggests that such structures are stable
is a welcome argument that favors extension of the
Clar aromatic π-sextet beyond benzenoid hydrocar-
bons, for which it was designed, to non-benzenoid
hydrocarbons. However, regardless of the sophistica-
tion of theoretical calculations, quantum chemical
calculations are not a substitute for experimental
evidence. The alternative models based on the count
of conjugated circuits in all Kekulé valence structures
and only those in valence structures of maximal
degree of freedom suggest different outcomes regard-
ing the stability of bent [n]phenylenes. The first
alternative results in a progressive decrease of mo-
lecular RE for bent [n]phenylenes. In contrast, the
stability of linear [n]phenylenes under the same
assumptions remains rather constant, that is, inde-
pendent of n, as can be seen from Table 25 and the
calculations reported by Trinajstić et al.819 The second
alternative is to consider only Kekulé valence struc-
tures of the maximal degree of freedom, which is
tantamount to extending the Clar aromatic π-sextet
to non-benzenoid hydrocarbons. In this case we see
that the molecular RE for bent [n]phenylenes re-
mains fairly constant for both the bent [n]phenylenes
and linear [n]phenylenes. Moreover, the two have the
same molecular RE. On the other hand, Clar’s
comment that “there is some degree of aromatic
conjugation” through the central four-membered ring
may suggest that the dominant role in characteriza-
tion of non-benzenoids is played by the Kekulé
valence structures of the maximal degree of freedom,
while the remaining Kekulé structures may still
make some contribution to slightly reducing the
molecular stability.

In view of this, the synthetic achievements of K.
Peter C. Vollhardt of the University of California,
Berkeley, and co-workers820-822 are remarkable for
two reasons: On one hand, from the experimental
point of view, they show the resourcefulness of
synthetic chemists in achieving the almost “impos-
sible”, and on the other hand, from the theoretical
point of view, they offer a proof “beyond the reason-
able doubt” that Clar’s model of aromatic π-sextets
extends to non-benzenoid hydrocarbon chemistry.

In chemistry, priority is to be given to experimental
facts, not to calculations. Clar has offered experi-
mental facts to support his model of the aromatic
π-sextet, but as we know, theoretical chemists have
for the most part ignored his works. Recall the
opening remark by R. G. Parr in this section. That
is what has happened to Clar’s aromatic π-sextet.
Now, with the synthesis of helical [n]phenylenes by
Vollhardt and co-workers, we may expect additional
quantum chemical computations from theoretical
circles. These are welcome. However, to fully appreci-
ate the conjugated circuits model and the work of
Clar, and to accept his model of the aromatic π-sextet,
apparently requires some imagination, or at least a
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willingness to accept that “... when you have a deep
truth (a quantum chemical model), then the opposite
of the deep truth may again be deep truth (Clar’s
aromatic π-sextet)”.

In Table 52 we have collected the expressions for
RE for [n]phenylenes and show the RE as well as
REPE, all based only on the Kekulé valence struc-
tures of the highest degree of freedom. Hence, these
are the expressions for RE of Clar valence structures
of [n]phenylenes. An attempt to extend the idea of
aromatic π-sextets to non-benzenoid systems was
suggested over 10 years ago823 and illustrated on
derivatives of biphenylene. At that time this was
somewhat speculative, as there was no supporting
evidence that would, beyond reasonable doubt, point
to bent [n]phenylenes as relatively stable. Since that
time, new developments have permitted a more
rigorous approach to generalization of Clar’s sextet
model to non-benzenoids: Today we have (1) a
rigorous mathematical definition of Clar structures
as a subset of Kekulé valence structures of the
maximal degree of freedom; (2) a more reliable
quantum chemical calculation on linear and bent [n]-
phenylenes; and (3) experimental evidence on the
relative stability of bent [n]phenylenes. All three of
these factors can be combined in support of extension
of Clar structures to non-benzenoids, and [n]phen-
ylenes in particular.

The expression for RE shown in Table 52 for bent
[n]phenylenes, as discussed earlier, hold equally for
linear [n]phenylenes. It follows then that the so-
called anti-kekulene, which is cyclic [6]phenylene,
may not be so elusive a structure to synthesize, as
has been suggested previously in the literature.
Trinajstić and collaborators819 calculated RE for anti-
kekulene and anticipated that its preparation will be
difficult in view of its low RE. However, now we see
that, according to the conjugated circuits model,
which confines analysis of conjugated circuits solely
to Kekulé valence structures of the highest degree
of freedom, the expected RE is not going to be low,
and the REPE of anti-kekulene is not going to be
much different than the REPE for biphenylene. In
view of the reported synthesis of [7]phenylene by
Vollhardt and co-workers,820-822 we may expect cyclic
[6]phenylene to be synthesized in the near future. It
will not be surprising if reports on its synthesis
appear soon, even though such expectations have
been around for the last 10 years! This fact, despite
a prevailing optimism among scientists, probably well
illustrates the difference between the real chemistry
and the “pencil and paper” chemistry.

XXXVIII. Chemical Graph Theory s Prospects and
Retrospect

We started this review with a list of important
contributors and contributions toward the develop-
ment of the notion of aromaticity (Table 1). We
followed with a comprehensive review of applications
of the graph theory to the chemistry of benzenoid
hydrocarbons in particular. As has been demon-
strated, graph theory offered a novel frame for
formulation of chemical concepts of interest in data
reduction and interpretation of data, and hence a
better understanding of the chemistry of conjugated
hydrocarbons. Chemical graph theory is, however, a
broader field with application to other branches of
chemistry, including biochemistry. We hope, how-
ever, that in addition to many readers finding
numerous concepts of graph theory familiar, this
article will induce interested readers to get more
involved with chemical graph theory and not be
fooled into believing that he/she has “mastered” the
subject. In Table 53 we have collected numerous
concepts that have originated in either quantum
chemistry, structural chemistry, or chemical graph
theory, all of which are essentially of graph theoreti-
cal content. On one hand, they are listed as a
“warning” to those who tend to jump to the conclusion
that they know “all about graph theory” and that
there is nothing more to be learned. On the other
hand, they illustrate the interlacing of many graph
theoretical ideas with numerous early quantum
chemical ideas, which at the time were not recognized
as being graph theoretical by nature.

We also hope that this contribution will clarify
much of the confusion around the notion of aroma-
ticity. “Is Aromaticity Outmoded?” s this was the
title of a paper Balaban published over 20 years
ago.31 Critics of the concept of aromaticity should take
notice that Balaban is one of few theoretical chemists
who is at the same time also an experimental
chemist s thus he should be assumed to be familiar
with both the theoretical and experimental aspects
of aromaticity concept. In this article, Balaban con-
vincingly argued that “a reasonable balance of gen-
erality makes the concept of aromaticity extremely
useful qualitatively; however, for quantitative deter-
mination, narrow, more precisely defined, area of
aromaticity are to be specified.” 31 We believe that that
is precisely what we did with the concept of conju-
gated circuits s which allow a well-defined quantita-
tive notion of aromaticity for a narrow area of
conjugated hydrocarbons and conjugated carbons
(i.e., fullerenes). More recently, Krygowsky et al.824

published a paper entitled, “Aromaticity: a Theoreti-
cal Concept of Immense Practical Importance”. The
title of this paper clearly supports what Balaban
anticipated 20 years before. It is just difficult to see
how a concept that survived so many attacks, and
survived the transition from classical chemistry to
quantum chemistry, from simple HMO calculations
to ambitious ab initio computations, could suddenly
become outdated.

There is no doubt that there has been much
confusion about aromaticity, but confusion does not
discredit the scientific concept; rather, it reflects the

Table 52. Expressions for RE for [n]Phenylenes, RE
(in eV), and REPE Using Only Kekulé Valence
Structures of the Highest Degree of Freedoma

n only Kekulé structures of maximal df RE RE/sextet

1 2R1/2 (benzene) 0.841 0.841
2 (8R1 + Q1 + 2Q2 + Q3)/4 1.390 0.695
3 (24R1 + 4Q1 + 8Q2 + 4Q3)/8 1.938 0.646
4 (64R1 + 12Q1 + 24Q2 + 12Q3)/16 2.487 0.622
5 (160R1 + 32Q1 + 64Q2 + 32Q3)/32 3.035 0.607
6 (384R1 + 80Q1 + 160Q2 + 80Q3)/64 3.584 0.597
7 (896R1 + 192Q1 + 384Q2 + 192Q3)/128 4.132 0.590

a R1 ) 0.841 eV, Q1 ) -0.650 eV, Q2 ) -0.260 eV.
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Table 53. Concepts of Interest in Chemistry Developed within Chemical Graph Theory, As Well as Concepts
Evolving from Early Quantum Chemistry and Which Are of Graph Theoretical Nature

concept year author(s)

Hamiltonian circuit 1856 Hamilton
Kekulé structure 1865 Kekulé
molecular graphs 1878 Sylvester
π-aromatic sextet 1925 Robinson and Armitt
Fries structure 1927 Fries
Hückel MO 1930 Hückel
4n + 2 rule 1930 Hückel
Rumer diagrams 1932 Rumer
resonance 1930s Pauling
Pauling bond order 1935 Pauling, Brockway, and Beach
cycle index 1937 Polya
Coulson bond order 1939 Coulson
Meyer graphs 1940 Meyer
alternant hydrocarbons 1940 Coulson and Rushbrooke
path numbers 1947 Platt
topological index 1947 Wiener
alternant hydrocarbons 1947 Coulson and Longuet-Higgins
non-bonding MO 1950 Longuet-Higgins
subgraphs of secular determinant 1950 Coulson
parity of Kekulé structures 1952 Dewar and Longuet-Higgins
Gordon-Davison algorithm 1952 Gordon and Davison
Frost-Musulin diagram 1953 Frost and Musulin
isospectral graphs 1957 Collatz and Sinogowitz
Clar postulate 1958 Clar, Kemp, and Stewart
fully benzenoid hydrocarbons 1958 Clar and Zander
graphical enumeration 1961 Platt
graphical cluster expansion 1964 Smolenski
signed matrices 1963 Kasteleyn
degenerate rearrangement graphs 1966 Balaban
ring benzene character 1967 Polansky and Derflinger
dualist graphs 1968 Balaban and Harary
algebraic structure count 1968 Wilcox, Jr.
double coset labels 1970 Ruch and Hässelbarth
graph-like state of matter 1970 Gordon and Temple
Hosoya index 1971 Hosoya
Möbius diagram 1971 Zimmerman
computer enumeration of Kekulé structures 1972 Cvetković, Gutman, and Trinajstić
bay regions 1972 Jerina
leading eigenvalue 1973 Lovasz and Pelikan
resonance theory 1973 Herndon
vertex canonical labels 1974 Randić
isospectral points 1975 Živković, Trinajstić, and Randić
connectivity index 1975 Randić
factor graphs 1975 Joela
sextet polynomial 1975 Hosoya and Yamaguchi
conjugated circuits 1976 Randić
higher order connectivity indices 1976 Kier et al.
valence connectivity indices 1976 Kier and Hall
topological RE 1976 Aihara
topological RE 1977 Gutman, Milun, and Trinajstić
acyclic polynomial 1977 Gutman, Milun, and Trinajstić
information-theoretic indices 1977 Bonchev and Trinajstić
isoconjugate molecules 1977 Randić
parity of conjugated circuits 1977 Randić
periodic table of isomers 1978 Randić
disjoint conjugated circuits 1979 Gutman and Randić
Kekuléan long-range order 1979 Klein
anti-Hückel rule 1980 Sinković and Trinajstić
REPE 1980 Hess and Schaad
graphical enumeration of configurations 1980 Randić
complexity index 1981 Bertz
row distance sum; Balaban index 1982 Balaban
reduced graph model 1982 Jerman-Blažič and Trinajstić
N-tuple code 1983 Trinajstić et al.
ID numbers 1984 Randić
formula periodic table 1984 Dias
generalized Clar structures 1984 Herndon and Hosoya
leap-frog transformation 1986 Folwer
kappa shape indices 1986 Kier
unique vertex labels 1986 Randić
innate degree of freedom 1986 Randić and Klein
search for pharmacophore 1987 Randić et al.
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limitations of the perpetrators, who apparently muddle
the waters rather than letting the dust settle. For
example, according to Castells, “Fullerenes are not
aromatic ... of course!” 825 The argument is based on
what aromaticity really means to him and (he thinks)
to most organic chemists: “Tendency to react with
‘reversion to type,’ that is, regeneration of the aromatic
ring [by ‘expelling’ a hydrogen ion] appears to be the
most, if not the only, distinctive attribute of the
peculiar chemical behavior of benzene and benzene-
like (i.e., aromatic) species.” 826 If one assumes the
above definition for aromaticity, it is difficult not to
agree, but all depends on accepting Castells’s defini-
tion in the first place s which we do not. I, of course,
cannot speak for “most of organic chemists”, but at
the beginning of this review I rejected the position
that properties should be used to define aromaticity.
Clearly, the property considered here is one of the
properties of aromatic compounds, but one can object
to the assumption that this particular property
should be the basis for aromatic characteristic of all
aromatic compounds. It would be less confusing and
quite logical to coin a special label for this particular
property, such as “reversibility”, and then claim that
most aromatic compounds possess reversibility. With
such a “minor” modification, the aromaticity of
fullerenes would not be questioned!

Arguments similar to the one just exposed hold for
other experimental aromaticity approaches, each of
which should be given a specific label, because they
do not always parallel each other to the same degree.
Thus, we do not question the logic of classifying
compounds as aromatic or not, but rather we question
the premises on which conclusions are based. It

appears that one can say for the present confusion
on aromaticity that it arose not because one could
not see the forest for the trees, but just the opposite s
because of the forest (of aromatic properties) one
could not see the tree s the tree blooming with
Kekulé structures!

XXXIX. Tribute to Experimental Chemistry

We would like to end this article with a list of
experimentalists who made those molecules that
have intrigued us and induced us to give more
thought to the concept of aromaticity (Table 54).
These are the people who deserve our respect and to
whom we owe much when our calculations, models,
and theories come to be tested, accepted, modified,
or rejected. Finally, we separately listed in Table 55
the benzenoid hydrocarbons that Eric Clar investi-
gated during his more than 50 years of fruitful
exploration of the properties of benzenoid hydrocar-
bons. Structural formulas for the compounds of Table
55 can be found in the Handbook on Polycyclic
Hydrocarbons, by J. R. Dias.331 As one browses
through this handbook, in which are collected over
400 benzenoid structures, one cannot fail to observe
that for just about half of these structures there is
no publication reported. Hence, there are plenty of
challenges awaiting those interested in synthetic
work. As one can see, despite the outstanding efforts
of Clar and several other chemists who were very
much interested in the chemistry of benzenoid hy-
drocarbons, in particular W. Laarhoven, M. Zander,
R. Martin, and A. T. Balaban (for references see the
above-mentioned handbook by Dias), even the field

Table 53. (Continued)

concept year author(s)

topographic indices 1988 Randić
ring resonance energy 1988 Randić, Plavšić, and Trinajstić
conjugated paths 1988 Randić and Trinajstić
endospectral graphs 1989 Randić et al.
maximal valence structure 1990 Randić
hierarchy of π-network models 1991 Klein et al.
orthogonal molecular descriptors 1991 Randić
variable topological indices 1991 Randić
twin graphs 1992 Hosoya
resistance distance 1993 Randić and Klein
graphite cover by benzenoids 1993 Hosoya et al.
D/D matrices 1994 Randić, Kleiner, and DeAlba
posetic D/D measures Klein
subspectral graphs 1994 Randić, Guo, and Kleiner
hyper-Wiener index 1994 Randić
reduced reaction graphs 1994 Gimarc and Brant
graphical DNA representation 1994 Nandy
graphical matrix 1997 Randić, Razinger, and Plavšić
graph theoretical chirality indices 1998 Randić
dominant Kekulé structures 1998 Flocke, Schmalz, and Klein
mean-field resonance theory 1998 Klein, Bytautas, and Ivanciuc
invariants for folded proteins 1999 Randić and Krilov
fullerene Clar-type structures 1999 Flocke, Schmalz, and Klein
DNA matrix invariants 2000 Randić
reaction poset (partially ordered set) 2000 Klein and Bytautas
map invariants (proteomics) 2001 Randić, Zupan, and Novič
Clar structure for non-benzenoids 2002 Randić
C60 fullerene Clar structure 2002 Randić
graphical count of π-aromatic sextets 2002 Klavžar, Žigert, and Gutman
2-D graphical DNA representation 2003 Randić, Vračko, Lerš, and Plavšić
compact 2-D DNA representation 2003 Randić, Vračko, Zupan, and Novič
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of smaller benzenoids (those having at most n ) 13
fused benzene rings) is at best less than half explored.

The legendary image of scientist as a humble
searcher for truth is more and more replaced by
the image of a scientist ... highly competent in a
narrowly defined domain but arrogantly extend-
ing his competence into fields in which he knows
nothing, and neglecting the fact that science is
only a small subdivision of human knowledge.

Hans Primas827

Chemical graph theory is bound to remain terra
incognita for some, who will, undoubtedly, continue
to be hostile toward chemical graph theory, curse it,
and find it faulty, rather than becoming acquainted
with the basic concepts of the field in which they are,
at best, novices. One should not underestimate the
dangers of the situation in which chemical graph
theory found itself, not by its fault. The situation is

not novel. Confucius, about 500 years B.C. recognized
such difficulties when saying, “Those who do not
know, and do not know that they do not know, are
dangerous - avoid them.” That is the reason that we
limited our comments to just a single “critical” paper
from authors who displayed unfamiliarity with el-
ementary notions of chemical graph theory. It is
fitting, therefore, to end this review with yet one
additional quotation from Max Planck:674

It would certainly be a serious illusion on my
part if I hoped that my remarks have carried
general conviction, or even that they have been
generally understood ... Surely much more will
be thought and written concerning these ques-
tions, for theorist are numerous and paper is
patient.

Table 54. Distinguished Contributions from Synthetic Chemists of Importance for Clarification of the Concept
of Aromaticity

author year work on

Faraday 1825 benzene
Graebe 1874 phenanthrene
Gabriel and Michael 1887 tetracene
Thiele 1899 cyclopentadiene
Meyer 1912 fluorene, chrysene
Weitzenböck 1913 pyrene
Clar 1924 pentaphene
Clar 1929 1,2:5,6-dibenzoanthracene, pentacene
Cook 1931 3,4-benzphenanthrene
Scholl and Meyer 1932 coronene
Cook and Hewett 1933 benzo[a]pyrene, benzo[e]pyrene
Ružička 1934 picene
Pfau and Plattner 1937 azulene
Weinmayr 1939 perylene
Lothrop 1941 biphenylene
Prelog and Seitwerth 1941 adamantane
Bartlett et al. 1942 trypticene
Kealy and Pauson 1951 ferrocene
Doering and Knox 1954 tropylium ion
Thiec and Wiemann 1956 fulvene
Doering and Matzner 1958 fulvalene
Hafner and Schneider 1958 aceheptylene derivative
Sondheimer and Wolovsky 1959 [18]annulene
Doering 1959 heptafulvene
Katz 1960 cyclooctatetraene dianion
Prinzbach and Rosswog 1961 sesquifulvalene
Dauben and Bartelli 1961 heptalene
Cava 1963 derivative of naphthocyclobutadiene
Schroder 1964 bullvalene
Vogel 1964 bridged 4n + 2 π-electron systems
Katz et al. 1965 aromatic anions
Barth and Lawton 1966 corannulene
Trost et al. 1971 pyracylene
Anderson et al. 1973 azupyrene
Martin 1974 large helicenes
Olah, Staral, and Paquette 1976 cyclooctatetraene dication
Staab and Diedrich 1978 kekulene
Paquette, Ternansky, and Balough 1982 dodecahedrane
Wilcox and Farley 1984 dicycloocta[def:jfk]biphenylene
Vollhardt 1986 treefold [4]phenylene
Obenland and Schmidt 1987 tribenzo[a,g,m]coronene
Iijima 1991 buckytubes
Siegel 1995 trisbicyclo[2.1.1.]hexabenzene
Müllen et al. 1997 giant benzenoids
Scott 2002 C60 synthesis
Vollhardt 2002 helical [n]phenylenes
Nakamura et al. 2003 [10]cyclophenacene
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XL. Apologies
Believe nothing, no matter where you read it, or
who said it, no matter if I said it, unless it agrees
with your own reason and your own common
sense.

Buddha

We tried to give an overview on aromaticity from
the graph theoretical point of view, and in doing this
we tried also to give a broad underlying theoretical

basis for chemical graph theory. To do less than this
may only fuel confusion about the role of chemical
graph theory because it may, in the eyes of some,
maintain the impression that chemical graph theory
is at best of “approximate and qualitative” nature s
which of course is not the case. Thus, to some the
presentation of alternative ways of enumerating
Kekulé valence structure may appear redundant in
view of the fact that one can get the results easily by
computer s but does a computer result gives insight

Table 55. Benzenoid Hydrocarbons That Clar Synthesized and Investigated

benzenoid year benzenoid year

pentaphene 1924 dinaphtho[8,1,2-abc:8′,1′,2′-lmn]peropyrene 1960
1,2:5,6-dibenzoanthracene 1929 dinaphtho[8,1,2-abc:8′,1′,2′-mno]peropyrene 1960
pentacene 1929 dibenzo[de,op]pentacene 1962
naphtho[3,2-a]pyrene 1936 dibenzo[fg,st]pentacene 1963
dibenzo[c,m]pentaphene 1939 dibenzo[de,uv]pentacene 1963
isoviolanthrene 1939 benzo[a]zethrene 1963
hexaphene 1940 dibenzo[hi,uv]hexacene 1963
dibenzo[a,e]pyrene 1943 dibenzo[fg,wx]hexacene 1963
dibenzo[a,l]pentacene 1943 dibenzo[de,yz]hexacene 1963
naphtho[2,3-a]pentaphene 1948 dibenzo[e,p]zethrene 1963
dibenzo[a,c]pentacene 1948 dibenzo[f,q]zethrene 1963
benzo[b]pentacene 1948 dibenzo[hi,xy]heptacene 1963
benzo[c]pentaphene 1948 dibenzo[j,xyz]heptacene 1963
dibenzo[e,ghi]perylene 1948 dibenzo[jk,a′b′]octacene 1963
ovalene 1948 naphtho[2,1-a]naphthacene 1964
benzo[j]heptaphene 1949 dibenzo[g,p]chrysene 1964
dinaphtho[2,3-a:2′,3′-h]pyrene 1949 benzo[a]phenanthro[9,10-c]tetracene 1964
dibenzo[a,n]perylene 1949 tetrabenzo[de,hi,mn,qr]tetracene 1964
dibenzo[a,j]perylene 1949 dibenzo[fg,ij]naphtha[1,2,3,4-rst]pentphene 1964
dibenzo[a,o]perylene 1949 dibenzo[a,k]naphtha[1,2,3,4-ghi]pentphene 1964
benzo[xyz]heptaphene 1949 dibenzo[de,yz]naphtha[8,2,1-hij]hexaphene 1964
tribenzo[a,ghi,o]perylene 1949 dibenzo[ij,rst]phenanthro[9,10,1,2-defg]pentaphene 1964
dibenzo[a,s]terrylene 1949 tribenzo[a,d,g]coronene 1964
dibenzo[bc,ef]coronene 1949 tetrabenzo[b,g,k,p]chrysene 1964
benzo[a]hexacene 1950 tribenzo[f,ij,no]tetraphene 1964
dibenzo[b,n]picene 1954 tribenzo[a,c,j]tetracene 1961
heptaphene 1954 benzo[h]pentaphene 1962
tetrabenzo[de,h,kl,rst]pentaphene 1954 hexabenzo[a,d,g,j,m,p]coronene 1965
tetrabenzo[de,hi,op,st]pentacene 1954 dibenzo[de,st]pentacene 1966
zethrene 1955 phenanthro[9,10,1-hij]tetracene 1966
dibenzo[j,w]terrylene 1955 dibenzo[hi,wx]heptacene 1966
benzo[a]perylene 1956 benzo[st]naphtha[2,1,8,7-defg]pentacene 1966
tetrabenzo[a,c,l,n]pentacene 1956 anthra[1,2,3,4-ghi]perylene 1966
dibenzo[a,f]perylene 1956 benzo[uv]naphtha[2,1,8,7-defg]pentacene 1966
naphtho[8,1,2-bcd]perylene 1956 benzo[wx]naphtho[2,1,8,7-hijk]heptacene 1966
tetrabenzo[de,no,st,c′,d′]heptacene 1956 naphtho[2,3-h]pentaphene 1968
dibenzo[hi,qr]anthanthrene 1956 naphtho[2,3-j]heptaphene 1968
dibenzo[bc,mn]peropyrene 1956 anthra[2,3-j]heptaphene 1968
dibenzo[bc,qr]peropyrene 1956 dibenzo[a,c]naphthacene 1970
dinaphtho[8,1,2-abc:2′,1′,8′-jlk]coronene 1956 dibenzo[a,p]chrysene 1970
dibenzo[tuv,xyz]naphtha[8,1,2-bcd]terrylene 1956 naphtho[2,3-f]picene 1970
benzo[b]picene 1957 benzo[rst]naphtho[3,4-h]pentaphene 1970
dibenzo[a,f]tetraphene 1957 anthra[1,2,3,4-rst]pentaphene 1970
benzo[qr]naphtha[2,1,98,7-fghi]pentacene 1957 benzo[h]naphtha[1,2,3,4-rst]pentaphene 1970
coronene 1957 tribenzo[b,r,w]terrylene 1971
dibenzo[fg,ij]pentaphene 1958 tribenzo[fg,mn,xyz]heptaphene 1971
tribenzo[fg,ij,rst]pentaphene 1958 tetrabenzo[i,klm,opq,s]terrylene 1971
terrylene 1958 pentabenzo[b,ghi,qrs,r,w]terrylene 1971
naphtho[2,3-a]coronene 1958 dinaphtho[3,2,1-fg:1′,2′,3′-qr]pentacene 1972
tetrabenzo[a,c,j,l]tetracene 1959 tetrabenzo[a,d,j,m]coronene 1972
naphtho[1,2,3,4-ghi]perylene 1959 dinaphtho[8,1,2-bcd:8′,1′,2′-mno]peropyrene 1972
tetrabenzo[a,h,l,s]peropyrene 1959 benzo[b]chrysene 1973
benzo[a]coronene 1959 benzo[a]tetracene 1973
dibenzo[a,g]coronene 1959 dibenzo[a,j]coronene 1977
tetrabenzo[a,cd,fg,n]anthanthrene 1959 tetrabenzo[a,c,m,o]naphtha[1,2,3,4-rst]pentaphene 1979
hexabenzo[bc,ef,hi,kl,no,qr]coronene 1959 naphtho[8,1,2-cde]heptacene 1979
dibenzo[lm,a′b′]heptacene 1960 dibenzo[fg,op]naphthacene 1979
tetrabenzo[fg,lm,uv,a′b′]heptacene 1960 dibenzo[a,o]naphtha[1,2,3,4-rst]pentaphene 1979
dibenzo[bc,kl]coronene 1960 tetranaphtho[3,2,1-de:1′,2′,3′-jk:3′′,2′′,2′′-op:1′′′,2′′′,3′′′-uv]pentacene 1979
dibenzo[cd,pq]bisanthene 1960 tetranaphtho[3,2,1-de:1′,2′,3′-jk:3′′,2′′,2′′-op:1′′′,2′′′,3′′′-uv]pentacene 1979
dibenzo[ef,pq]bisanthene 1960 dinaphtho[8,1,2-abc:2′,1′,8′-klm]coronene 1981
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into how the results are obtained? Just as it is of
considerable importance when examining experimen-
tal data to know how they are obtained, what
instruments, what methods, what impurities, what
uncertainties, what solvents, what temperatures,
etc., it is equally important to know what algorithms,
what approximations, what statistical procedures,
etc. are used for obtaining theoretical data and for
subsequent data reduction. So, we do not apologize
to those who may think that there is too much
tangential material embedded in this review. On the
contrary, we apologize to those who find that not
enough of such material has been included.

Much more is known and much more could have
been said about many topics presented in this review.
For example, when speaking of the characteristic
polynomial of a graph, besides the graphical/combi-
natorial approaches initiated by Coulson105 and com-
pleted by Sachs106 for computation of the character-
istic polynomial that we cited, we could mention the
graphical approaches of Hosoya828 as well as Jiang.829

We also could have pointed to tables of computed
characteristic polynomials for numerous graphs, such
as those published by Heilbronner830 almost 50 years
ago, comprehensive tables compiled by Hosoya et
al.831-833 for large numbers of benzenoids, and tables
presented by Cvetković et al.259 for smaller graphs,
as well as tables of matching polynomials for ben-
zenoid hydrocarbons reported by Gutman and co-
workers834,835 Neither have we exhausted the list of
computer programs and underlying algorithms for
calculation of the characteristic polynomial and
closely related matching polynomial. For example,
calculation of the characteristic polynomials for trees
can be accomplished efficiently by adopting the
“pruning” procedure of Balasubramanian,836-838 which
shows how can one modify the adjacency matrix
when all terminal vertices are erased. By repeating
the procedure, large acyclic graphs can be reduced
in few steps to matrices of relatively small size.
Barakat839 outlined a general procedure for construc-
tion of the characteristic polynomial which rests on
the symmetric function theory, which itself can be
traced to Newton’s identities.840,841 He showed that
the method of Frame,842 later to be referred to as the
Le Verrier-Fadeev-Frame method, which was em-
ployed by Balasubramanian843 is equivalent to the
symmetric function and Newton’s identities. Hosoya
and collaborators844 derived general expressions for
the characteristic polynomials of various series of
cyclic and linear polymers of polycyclic aromatic
hydrocarbons. Hosoya and Ohkami112 developed a
simple and efficient method called the operator
technique for obtaining the recurrence relation for
periodic networks, which can be applied for construc-
tion of the characteristic polynomial and matching
polynomial of polyacene graphs. Those interested in
more details should examine the lengthy list of
papers on evaluation of the characteristic polynomial
given by Balasubramanian.845 Similarly, a list of
numerous problems in chemistry in which the char-
acteristic polynomials are of interest has been given
by Křivka and collaborators.846 This article also
includes a brief history on the evaluation of the

characteristic polynomial of a matrix and sheds light
on the origin of the Le Verrier-Fadeev-Frame name
for this rather widely used approach: Le Verrier847,848

developed this method in 1840 and used it to calcu-
late the positions of planet, and some 100 years later
Fadeev849 modified the method, which apparently
was rediscovered by Frame.

Another aspect of the computation of characteristic
polynomials that has been mostly overlooked in the
past is the format of the basis functions used to
express the polynomials s which are routinely shown
as linear combinations of powers xn. However, there
are some advantages when instead of xn one uses
characteristic polynomials of linear chains of length
n, which are in fact Čebišev polynomials:850-853

Kirby854,855 developed a computer program for evalu-
ation of the characteristic polynomial expressed in
terms of Čebišev polynomials (in BASIC) for conju-
gated systems that is suitable for small computers.
Čebišev polynomials have an important property:

That is, their product can be expressed as a combina-
tion of polynomials of larger and smaller indices,
which by repeated application eventually always
yields a linear expression for any product of Čebišev
polynomials in terms of Čebišev polynomials of order
(m + n) to (m - n). This property allows one to find
Lm+n from Čebišev polynomials of lower orders.
Another useful application of Čebišev polynomials is
to find factors of characteristic polynomials.856-858

Factoring the polynomials help in finding common
fragments and common eigenvalues in different
structures. By knowing common fragments, one can
rapidly calculate the characteristic polynomial of a
larger system which has such fragments embedded
in its skeleton.859-862

More could be said about the characteristic poly-
nomials, their properties, and their use in chem-
istry. For example, self-returning random
walks264,265,283,863-877 and spectral moments559,825,878-888

illustrate properties that have been recognized as
being of interest in chemical applications and char-
acterization of molecules. Instead of continuing to
outline such applications, let us just point to one
rather intriguing property of the characteristic poly-
nomial that was recognized only 30 years ago, which
is, in view of the long history of calculations of
characteristic polynomials, a relatively recent time.
It is known as Clarke’s theorem:881

Theorem: The derivative of the characteristic poly-
nomial of a graph G equals the sum of the charac-
teristic polynomials of Ulam subgraphs of G.

Ulam subgraphs882 of a graph G are the collection of
subgraphs obtained from G by erasing one vertex
(and all pending edges) from it at a time. The “graph
reconstruction conjecture” asserts that every finite
simple undirected graph on three or more vertices is

L0 ) 1, L1 ) x, L2 ) x2 - 1, L3 ) x3 - 2x

L4 ) x4 - 3x2 + 1, L5 ) x5 - 4x3 + 3x, etc.

LmLn ) Lm+n + Lm-1Ln-1
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determined, up to isomorphism, by the collection of
its vertex-deleted subgraphs.882 A finite simple un-
directed graph is a graph having no directed bonds
and no multiple bonds. A graph on two vertices has
been excluded because its Ulam subgraphs consist
of a single vertex, and for two such vertices one
cannot assert whether they have been connected or
not. If one restricts the conjecture to connected
graphs, then graph on two vertices can be included.

Ulam’s reconstruction conjecture is generally re-
garded as one of the foremost unsolved problems in
graph theory.883 According to mathematician O’Neal,884

“A clever amateur has equal chances to solve the
problem as a professional.” Harary “has even classi-
fied it as a ‘graphical disease’ because of its contagious
nature.” 883 We have mentioned Ulam’s subgraphs
and Ulam’s graph reconstruction conjecture not to
spread the disease (which has many victims, includ-
ing this author886) but rather to point to the intrigu-
ing relationship between the calculus (derivatives)
which is associated with continuum and discrete
mathematics (graph theory). On one side we have
derivatives of polynomials and on the other side
discrete objects, a graph and its subgraphs. We have
seen similar relationships between the characteristic
polynomial of a secular equation and the number of
Kekulé valence structures of a benzenoid,475 and the
relationship between Coulson and Pauling bond
orders as found by Ham, Ruedenberg, and Platt.171

Clarke’s theorem, besides its curiosity, may have
some practical use as it facilitates evaluation of the
characteristic polynomial for large polycyclic systems
like benzenoids that have no pending bonds. In the
case of systems with pending bonds, one can apply
recursions, but if there are no terminal bonds, then
evaluation of characteristic polynomial is more te-
dious. Using Clarke’s theorem, one can apply recur-
sion to corresponding Ulam’s subgraphs and then
evaluate the integral for the resulting sum of char-
acteristic polynomials of Ulam’s subgraphs.848 The
constant of integration can be derived from K, the
number of Kekulé valence structures, which can be
obtained independently.

We could continue on this topic with additional
material, such as construction of “characteristic
equations” for a graph based on the count of walks,869

which gives a much higher discrimination between
molecules than does the characteristic polynomial;
on the relationship between the characteristic poly-
nomial and matching polynomial for some graphs;887

on construction117,118 and recursions888,889 of charac-
teristic and/or matching graphs for families of graphs;
or on alternative routes to evaluation of the coef-
ficients of the characteristic polynomial.890,891 Finally,
we could add the concept of partial ordering892,893 and
Marcus’s concept of conformal sets,864 which is based
on self-returning walks in a molecule, which them-
selves are related to the coefficients of the charac-
teristic polynomial, which in turn are related to
higher powers of the adjacency matrix. Marcus has
found that, to a reasonable approximation, the sum
of the heats of combustion of a set of compounds
equals the sum of that of another set that satisfy

certain conditions. For example, benzene and ben-
zanthracene as a set agree with naphthalene and
phenanthrene, and anthracene and triphenylene as
a set agree with phenanthrene and chrysene. Hence,
in the findings of Marcus, we learn that the charac-
teristic polynomials that played the central role in
the Hückel MO model, and as such have been
abandoned by many as the HMO theory has been
abandoned, unexpectedly play a role in identifying
additivities among the heats of combustion.

Similarly, we could have extended our exposition
on the enumeration of Kekulé valence structures and
discussion of their properties. For example, Cyvin894

and Hosoya895 examined the symmetry properties of
Kekulé valence structures, Randić et al.896 considered
random generation of Kekulé valence structures, Guo
and Randić897,898 developed a recursive method for
enumeration of linearly independent conjugated cir-
cuits of benzenoids, El-Basil899 considered the order-
ing of Kekulé structures, Hall and Dias900 developed
a rapid topological test for discerning radical ben-
zenoids, and Kirby901 developed a simple algorithm
for finding Kekulé valence structures which is based
on a search for paths through the adjacency matrix,
while Gutman902 identified a triplet of CC double
bonds having different relative orientation within any
Kekulé valence structure as a molecular invariant.

We wish we could have given more space to these
topics and others not even listed concerning ben-
zenoid hydrocarbons, but that would require more
space, more time, and more study. So, we offer
sincere apologies to these and those others whose
work should have been included but was not. We also
should have given more space to some results of the
HMO method, which in the hands of knowledgeable
people, like Schaad and Hess,618,903-905 Cioslowski,906

or Hosoya907-911 can offer valuable insights. Equally,
we should have given some space to the present
important results based on using ab initio calcula-
tions, but we hope that Paul von Ragué Schleyer, the
guest editor of the special issue of Chemical Reviews
on aromaticity, will do this not only more thoroughly
but also much better, hopefully in the near future.

One of the reasons for this ad hoc list of omissions
is also to remind readers that there is much more
about almost any of the subjects related to aroma-
ticity of benzenoid hydrocarbons that this review has
covered. Those who are ready to criticize graph
theoretical methodology in general, and the graph
theoretical approach to aromaticity in particular,
have been warned that they ought to do their
homework before offering their opinions. So far, one
can summarize critics of chemical graph theory of the
past by the well-known saying: “Those with the least
expertise have the most opinions.” It is fitting, there-
fore, to end the story of the graph theoretical ap-
proach to aromaticity with a saying of American
Indians: “Before you criticize your neighbor you
should walk a mile in his moccasins.” The only
comment that I could add to this is that most critics
never even put moccasins on, and as readers may
have seen, to catch the spirit of chemical graph
theory, it could be a walk much longer than a mile.
Chemical graph theory, which has a distinguished
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past, a rich present, and a promising future, itself
has moved quite a distance from the simple notions
of HMO theory, with which it was wrongly identified
in the not so distant past.

Finally, I should apologize to readers for repeating
some statements a few times which may insult their
intelligence. Although this was done intentionally,
the reason is that it is not expected that one will have
time to read this review article without interruption.
Hence, some important results have been repeated
to facilitate continuation of examination of this
review and avoid the need to search for some of the
important results over and over the lengthy manu-
script.
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XLII. Appendix 1. Biographical Notes
We give here brief accounts on a few of the

outstanding players in the arena of “aromaticity”, just
to pay tribute to those mentioned, rather than doing
them justice in reporting on the significance of their
contributions. However, not all that could be men-
tioned has been included. In particular, we give no
deserved space to two giants of theoretical chemistry,
Linus Pauling and Erich Hückel, about whom read-
ers can find information elsewhere without difficulty.
A short biography of Linus Pauling was published
in Croatica Chemica Acta913 on the occasion of Paul-
ing becoming an honorary member of the Croatian
Chemical Society in 1988. A short biographical note
on Ernest Hückel is to be found in the article (in
German) “50 Years of the Chemical Bond”, written
by W. Haberditzl.914

We ordered the short list of persons according to
the year of their death. We start with Arthur Cayley
and James Joseph Silvester, both mathematicians,
both undeservingly little known among chemists
despite their early recognition of the importance of
discrete mathematics for chemistry. For more details
on them one should consult E. T. Bell’s book Men of
Mathematics915 and an article by Rouvray916 on the
pioneering contributions of Cayley and Silvester to
the mathematical description of chemical structure.

Arthur Cayley (1821−1895)

Arthur Cayley was born in 1821 in Richmond,
Surrey, and died in 1895 in Cambridge. He was a
leading mathematician of his time in England and
is responsible for the introduction of the Leibniz
notation for calculus in England, where because of a
100-year dispute between the followers of Newton
and the followers of Leibniz about the priority of the
“discovery” of calculus, the Leibniz notation (which
was more sophisticated and more satisfactory) was
not used, which was detrimental to the development
of calculus in England. It appears that Newton may
have discovered calculus before Leibniz, but he kept
his discovery for his own use. The fact is that Leibniz

Herman Dalmata Slavus (12th century) natural philosophy
Frano Petriš

(Francisus Patricius)
(1529-1597) natural philosophy

Markantun Dominis (1560-1624) natural philosophy
Janez Vajkard Valvasor, FRS (1641-1693) natural philosophy

Rudjer Bošković, FRS (1711-1787) natural philosophy
Jurij Vega (1754-1802) mathematics:

log tables
Jozef Štefan (1835-1893) physics: Stefan law
Nikola Tesla (1856-1943) multiphase

currents, etc.
Andrija Mohorovičić (1857-1936) Mohorovičić layer

Fritz Pregl (1869-1930) Nobel Prize in
Chemistry 1923, “for his
invention of micro-analysis
of organic substances”

Leopold Ružička (1887-1967) Nobel Prize in
Chemistry 1939, “for his work
on polymethylenes and higher
terpenes”

Stjepan Mohorovičić (1890-1980) physics: positronium
Vladimir Prelog (1906-1998) Nobel Prize in

Chemistry 1975, “for his
research into the stereochem-
istry of organic molecules
and reactions”
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was the first to publish his discovery of calculus, upon
which Newton came with claim that he had also
discovered it sometime before.

Disputes over priority in science are not so uncom-
mon, though only when some major discoveries are
concerned do we hear about them. The fact that
several researchers come upon the same or similar
ideas reflects the evolutionary aspect of science. The
point is well illustrated with controversial claims for
the invention of the cycloid, a mathematical curve
that can be constructed by following a fixed point on
a circle as the circle moves on a horizontal line. The
following 17th century scientists were involved in the
discovery of the cycloid:917 Galilei, Toriccelli, Des-
cartes, Fermat, Wren, Wallis, Huygens, Johann Ber-
noulli, Leibniz, and Newton. This is almost a “who’s
who” of 17th century science! “Even as there were
many discoveries at this period of time, there were also
many arguments about who has discovered what first,
accusations of plagiarism, and minimization of one
another’s work. As a result cycloid has been labeled
the Apple of discord ...” 917

There are numerous contributions describing enu-
meration of isomers, an early topic of algebraic
chemistry. Chapter 11 in the book by N. Trinajstić,
Chemical Graph Theory, is devoted to enumeration
of isomers, where the reader can find relevant refer-
ences. Trinajstić, however, quotes Cayley’s paper in
Berichte der Deutschen Chemischen Gesellschaft,29

published in 1875, as the “first to attempt to enumer-
ate isomeric alkanes CNH2N+2 and alkyl radicals
CNH2N+1”. This is not quite true, because it was
Flawitskii who in 1871 was the first to enumerate
isomeric alkanes CNH2N+2. Flawitskii published his
work first in a Russian journal26 and then in the
Berichte der Deutschen Chemischen Gesellschaft.27 It
is true that Cayley was the first to consider the
difficult task of enumeration of graphs,28 which
preceded his enumeration of molecular isomers by 18
years! It appears that it was Losanitch918 who was
the first to recognize that enumeration of isomers
constitutes a novel area of chemistry that involves
combinatorial algebra as a basic tool.

James Joseph Sylvester (1814−1897)

J. J. Sylvester was born in London (of orthodox
Jewish parents). By the age of 24 he was already
Professor of Natural Philosophy (that means science
and physics in particular) at the University College,
London, and at the age of 25 became a Fellow of the
Royal Society. Three months after his first visit to
the United States to be a professor of mathematics
at the University of Virginia, he resigned over an
incident when the university did not want to disci-
pline a student who insulted him. Not able to find
another position in the United States, he returned
to England and spent 10 “difficult” years as an
actuary for a life insurance company, difficult because
he was so creative in mathematics that he could not
fully pursue. He had a few private pupils, one of
whom was Miss Florence Nightingale s later well
known for improving military hospital services dur-
ing the Crimean War. After a rather difficult life, at

the age of 63 he was invited to be a professor of
mathematics at the Johns Hopkins University (Bal-
timore, MD). He accepted the invitation and had
seven “golden” years, literary and figuratively, at the
Johns Hopkins University, which accepted his only
condition: that his salary be paid in gold! This ought
to break the stereotype that professors of mathemat-
ics are “absent minded”. He was acquainted with
German, French, and Italian and had an interest in
suggesting technical terms (based on Greek and
Latin), including the term “graph” as used in graph
theory.

August Kekulé (1829−1896)

Fridrich August Kekulé von Stradonitz was a
Czech chemists (born in Darmstadt, Germany) who
spent most of his life studying and working in then
leading countries in science: France (Paris), England
(London), Germany (Heidelberg, Bonn), and Belgium
(Ghent). Although he is famous for his formula of
benzene, he made other important contributions to
chemistry. He was influenced by Justus von Liebig
and abandoned the study of architecture for chem-
istry. He got his Ph.D. degree in Giessen in 1852 and
went to Paris and later to London. While in London
in 1854, he found the first organic acid containing
sulfur (thioacetic acid). In 1956 he went to Heidel-
berg, and in 1857 he deduced that a carbon atom
always forms four bonds (counting double bonds and
triple bonds as two and three bonds, respectively).
The next year he went to Ghent, and in 1865 he went
to Bonn, where he spent the rest of his life. His
structural formula of benzene was proposed the same
year. While in Bonn he received nobility, adding to
his name “von Stradonitz”, the name of a small Czech
town where his family originated. In 1861-87 Kekulé
published a monograph on chemistry, Lehrbuch der
Organische Chemie, in four volumes.

On the 25th anniversary of the proposal of the
formula of benzene, the German Chemical Society
celebrated Kekulé in Berlin with a conference, at
which Kekulé spoke. Maybe this fact and the fact that
Kekulé was born in Germany and lived there most
of his life contributed to the assumption that he was
a German chemist s incorrect information which has
been propagated among others by Encyclopaedia
Britannica919 and the Grolier Encyclopedia of Knowl-
edge920 (and I am sure many others). Pauling, in his
famous The Nature of the Chemical Bond, stated that
Kekulé was a German chemist, which was again
repeated in his textbook on General Chemistry: “The
German chemist August Kekulé (1829-1896) in 1865
proposed that the six carbon atoms form regular
hexagon in space...”. 921 This was believed then, but
today we know better. Kekulé died when he was 67
years old, which at that time may have been a
respectable life span, but today is in many parts of
the world below the average life expectancy. If only
he had lived five years longer, he would have reached
the age of this author and been eligible for the first
Nobel Prize in Chemistry that in 1901 went, very
deservedly, to van’t Hoff. Unfortunately, Kekulé and
people of his time did not have the benefit of
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antibiotics and heart surgery, which have made it
possible for many of us to still be around. Besides
van’t Hoff (Nobel Prize in 1901), Emil Fisher (Nobel
Prize in 1902) and Adolf von Baeyer (Nobel Prize
1905) also spent a brief time working with Kekulé.
In fact, in 1856, von Baeyer wanted to study chem-
istry but the University of Berlin had no chemistry
laboratory at that time. He went to Heidelberg to the
famous laboratory of chemistry of Bunsen, where he
met Kekulé, whom he soon joined in Kekulé’s private
laboratory after a dispute with Bunsen. Baeyer joined
Kekulé in Ghent, Belgium, after his Ph.D. thesis was
apparently not appreciated by the establishment at
the University of Berlin.

In passing, let us add that Baeyer got his Nobel
Prize a few years after his student, Emil Fisher. It
has been said that one should be kind to one’s own
students that are climbing up (at the beginning of
their career) so that they can be kind to you when
your are going down (near the end of your career)!
But as we see from the case of Alfred von Baeyer and
Emil Fisher, there may be an additional reason for
being kind to your students s they may help you in
getting a Nobel Prize! We may also add that in 1885,
King Ludwig of Bavaria raised Baeyer to nobility for
his achievements s a practice that is carried at the
present time in the United Kingdom by Queen
Elizabeth II, who recently promoted Harry Kroto to
Sir Harry. Though there is a distinction, the promo-
tion of von Baeyer has been hereditary, which is not
the case with meritorious nobility of today’s United
Kingdom.

Besides common erroneous statements of Kekulé’s
German origin, in more recent times on more than
one occasion statements have been made that cast
doubt on his priority of suggesting a ring structure
for benzene. The following quotation from a relatively
recent book by P. Bell, Designing the Molecular
World, summarizes such skepticism:922

The discovery that benzene (which is also found
naturally in crude oil) is a carbon ring is usually
attributed to the German chemists Friedrich
August Kekulé, who reported it in 1865, but in
fact another German, Johann Loschmidt, seems
to have published the ring structure four years
before. Legend has it that Kekulé insight came
to him in a dream, in which he had visions of a
snake with its tail in its mouth. But as this story
seems to have arisen 25 years after Kekulé’s
“discovery”, it is hard to give it much credence.
Indeed, some suggest that Kekulé’s supposed
insight may have actually derived from a glance
at Loschmidt’s book!

Neither is this the place nor am I the most qualified
person to forward counter-argument to eradicate
these attempts to misrepresent the role of Kekulé in
proposing the structure of benzene. But this is the
place to criticize speculations which were never
supported by hard evidence. First, the dream of a
snake biting its tail is not a “legend” but a part of
Kekulé’s autobiography (as presented by him at the

celebration meeting in Berlin on the occasion of the
25th anniversary of his benzene ring structure). It
is not unusual that this “legend” came 25 years after
his “discovery”, because this was the occasion of
reminiscing about his work on benzene. If the Ger-
man Chemical Society had overlooked Kekulé and not
celebrated the 25th anniversary of his benzene ring
structure, most likely we would never have heard the
story of a snake biting its tail, just as if the German
Chemical Society had celebrated the 10th anniver-
sary of his benzene ring structure, most likely we
would have heard the story of a snake biting its tail
sooner than we did! To most of us, who are neither
historians nor lawyers, it stand to reason to believe
that if there were some reservations about the
“discovery” of the ring structure of benzene by
Kekulé, such concerns would have been raised in
Berlin in 1890 by those who knew what was going
on at that time and not a hundred years later by
those who may be dreaming themselves about dreams
of others! I mentioned lawyers deliberately as I would
like to see proceedings in a court of justice in which
a judge would allow an unsubstantiated statement
“that Kekulé’s supposed insight may have actually
derived from a glance at Loschmidt’s book!”

Charles A. Coulson (1910−1974)

Charles Coulson is one of the rare individuals who
was willing to share his precious time with so many
people, whether discussing scientific matters, hu-
manitarian concerns, or devoting time to spiritual
activities. He was a Ph.D. student of Lennard-Jones,
which gave him the first views of theoretical chem-
istry s the subject that he pursued despite being
formally a mathematician. During World War II he
was in Dundee until the end of the war (as an
objector) and moved later to London and eventually
to Oxford as Rouse Ball Professor of Mathematics.
Rouse Ball himself is well known for his book on
Mathematical Recreations923 s which is a quite seri-
ous book on various problems of discrete mathemat-
ics, more than the title may suggest. For many years
he organized summer schools on theoretical chemis-
try which contributed significantly to the growth of
theoretical chemistry in many countries of Europe.
To this one should add his book Valence, published
in the early 1950s, which was addressed to general
chemists explaining the molecular orbital approach
to molecules, and in a way can be viewed as comple-
mentary to Linus Pauling’s Nature of the Chemical
Bond, which was expanding valence bond descrip-
tions of molecules. Coulson apparently recognized the
merits of graph theory for chemistry, as he mentioned
in a brief personal letter of 17 June 1973 to this
author.

Erich Clar (1902−1987)

Erich Clar was born in Czech-Sudetenland. He
received his Ph.D. degree in 1927 at the Technical
University of Dresden for research on the synthesis
of polycyclic aromatic hydrocarbons s the topic that
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he cherished all his life. His studies on polycyclic
aromatic hydrocarbons concerned over 120 benzenoid
compounds (see Table 55 for a list of the compounds
synthesized, their physical properties, and spectro-
scopic properties studied by Clar). He published over
300 scientific papers and four books. Among his first
papers was one on the synthesis of pentaphene,
published in 1924; his last paper, about work on
dinaphthocoronene, was published in 1981. His first
book, Aromatische Kohlenwasserstoffe Polycycklische
Systeme924 (Aromatic Hydrocarbon Polycyclic Sys-
tems), was published during World War II by Springer
Verlag in 1941 and was reprinted in 1944 in Ann
Arbor, Michigan, “Published and distributed in the
Public Interest by Authority of the Alien Custodian.”
The second edition of this book, in which there was
considerable expansion of the theoretical section,
appeared in 1952.925 In this second edition there is a
section, “On the possibility of localization of π-elec-
trons in individual rings of polycyclic systems”, in
which benzenoid hydrocarbons are discussed in terms
of π-sextets.

For 10 years from 1936 to 1946, he worked at his
private laboratory in his home in Herrnskretschem
on the Elba River. In 1947 he moved to Glasgow,
Scotland. From 1953 to 1972, he was a member of
the Chemistry Department at Glasgow University.
In 1965 he received the Kekulé medal of the Chemi-
cal Society of German Democratic Republic (East
Germany). He died in 1987, shortly before he was to
be awarded the first Polycyclic Aromatic Hydrocarbon
Research Award at the 11th International Sympo-
sium on Polynuclear Aromatic Hydrocarbons (PAH)
(Sept 24, 1987; his wife Louisa accepted the award
on his behalf). Let us end with a brief quotation from
the obituary of Professor Erich Clar, written by C.
M. White and M. Zander:926

Professor Clar is considered by many scientists
to be the father of modern polycyclic aromatic
hydrocarbon chemistry. His most important
contributions to polycyclic aromatic hydrocarbon
chemistry were the discovery of the anellation
principle (Aromatic ring condensation), his “pi
sextet theory of PAH,” the development of ben-
zogenic diene synthesis known as the “Clar
reaction,” the synthesis of numerous new PAH
systems, and classification of UV absorption
bands of PAH corresponding to alpha, beta, and
para bands.

Professor Clar will be sorely missed.

Before we start here with a quotation from the
foreword that Robert Robinson wrote in June 1972
for Clar’s booklet, The Aromatic Sextet, let us be
reminded that the notion of the aromatic sextet was
proposed in 1925, before the rise of quantum theory
and quantum chemistry. Clar’s The Aromatic Sextet
appeared also five years after the paper by Polansky
and Derflinger582 in 1967, which has shown some
compatibility of the model of aromatic sextets with
simple MO calculations. Nevertheless, Robinson does
not sound very enthusiastic; on the contrary, one can
detect some doubts as to the validity of the aromatic
π-sextet model. Here is part of the foreword written
by Robert Robinson:49

... the sextet implies very little that can be stated
with any degree of certainty about the actual
distribution of the electrons in the resting phase
of the molecule ... In all considerations of mech-
anism of reaction it is preferable to employ the
Kekulé formulae and their analogues ... Like
almost everything connected with the theory of
benzenoid compounds, the aromatic sextet is
controversial topic.

Clar called the most stable benzenoid 6n π-electron
hydrocarbons “fully benzenoid”, suggesting these
compounds to be very similar to benzene. In a
number of publications, the same class of compounds
has been called by Gutman, Cyvin, and Polansky “all-
benzenoid hydrocarbons”, while Dias in a number of
his publications calls them “total resonant sextet
benzenoids”. The situation is somewhat unfortunate,
because as far as I can see, there is nothing wrong
with any of the three names, but Clar was the first
to suggest his label, and I have not seen compelling
arguments why these hydrocarbons should be called
differently. The situation is somewhat different when
considering fullerenes, to which, as Fowler and
Pisanski796 outlined, one can extended the notion of
aromatic π-sextets. Fullerenes in which all disjoint
hexagons are the site for π-sextets, so that all carbon
atoms belong to one of the sextets, are analogous to
“fully benzenoid” hydrocarbons. Fowler and Pisan-
ski796 refer to them as “perfect Clar structures”.

Finally, we should mention that Clar was con-
cerned with the difficulties that the early graph
theory papers experienced, as was reflected in a brief
personal letter of 20 May 1974 to this author.

Oskar E. Polansky (1919−1989)
Oskar Polansky was born in Vienna, where he

studied preparative organic chemistry. He got his
Ph.D. degree in 1957, as his studies were interrupted
by World War II. Ten years later in 1967, he became
the first professor of the newly founded Institute for
Theoretical Chemistry in Vienna. Since 1973 he was
at the Max-Planck Institute of Radiation Chemistry
in Mülheim, Germany, as a member of Directorium.
Besides his interests in thermal and photolytic
processes in organic systems, Polansky was one of
the early pioneers of chemical graph theory. In 1975
he organized a symposium on graph theory in chem-
istry which resulted in the initiation of MATCH (an
acronym for mathematical chemistry, coined by A.
Kerber927), a publication devoted to bridging the gap
between mathematics and chemistry.

Michael J. S. Dewar (1918−1997)
Unlike many theoretical chemists, he was also
a chemist; and his critical contribution to the
subject has still to be appreciated.

John W. Cornforth928

Michael Dewar was the first among organic chem-
ists to apply the MO method to larger organic
compounds, which in his own words “led to prediction
of a whole series of new concepts which have now been
generally accepted by organic chemists, for example,
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antiaromaticity, sigma conjugation, aromaticity and
antiaromaticity in nonplanar cyclic systems, the idea
that cyclic transition states may be aromatic or
antiaromatic, and aromaticity in rings where one of
the contributing atomic orbitals is a d atomic orbital
instead of p atomic orbital.” 929,930

He also pioneered the use of quantum-mechanical
calculations by developing very reliable semi-empiri-
cal procedures which for the first time produced
molecular resonance energies for numerous ben-
zenoid hydrocarbons. We have seen in this review the
remarkably high degree of internal consistency of his
RE calculations on a selection of benzenoids. Despite
these successful applications of semi-empirical meth-
ods, his contributions apparently were not appreci-
ated in some theoretical chemistry circles. At the
same time, M. J. S. Dewar showed at best limited
interest in the currently popular ab initio calculations
and was disappointed, if not bitter, about difficulties
he encountered in attempts to publish his work:
“... because I was not an official quantum chemist, I
often had major problems getting my work published,
even when it was really important, and I am sure that
many others have found themselves in the same
boat.” 929,930

Dewar, who described himself as a loner, may at
least in one area, that of being very critical of the
so-called “peer review” system, find himself in a
bigger company of admirers. It is not that the concept
of “peer review” is wrong but the practice apparently
is, because it is not uncommon to come across hostile
reviewers with hostile agendas s as Michael Dewar
apparently experienced near the end of his scientific
career.

In 1967 I invited Professor Dewar to be one of 10
speakers of a summer school on theoretical chemistry
in Herceg Novi on the Adriatic coast, under the
conditions that he give two lectures and deliver
lecture notes at the end. (The conditions were set by
then Yugoslav Atomic Energy, which financed the
summer school). One afternoon I was observing
Dewar making his notes with the help of a bottle of
whiskey. As the level of whiskey in the bottle was
going down, the pile of written pages of paper grew
up, and when the bottle was empty, the contract was
fulfilled!

XLIII. Appendix 2. Short Historical Comments on
Graph Theory in Mathematics and Chemistry

Before outlining a few important steps in the
development of graph theory in mathematics, we
should draw the attention of readers to an outstand-
ing book with historical information, Graph Theory
1736-1936, written by Biggs, Lloyd, and Wilson.230

The years 1736 and 1936 were selected because in
1736 the first paper (by Euler231) appeared that could
be taken as the beginning of graph theory, and 200
years later in 1936 the first book on graph theory
(by König232) appeared.

A. Graph Theory in Mathematics
Graph theory as a mathematical discipline was

initiated by a paper by Leonhard Euler in 1736, in

which he considered the “problem of Köningsberg
bridges”.231 In considering this problem, which has
topological and combinatorial elements, Euler used
algebraic methods to find the conditions under which
the network has a circular path in which every edge
is transversed only once. The next important contri-
bution came from physics in 1847, when G. Kirch-
hoff931 (1824-1887) solved the problem of current
flow in a general electric network. About the same
time, the English mathematician Cayley28 considered
the problem of enumeration of mathematical objects
called trees, the special case of which are molecular
skeletons of saturated hydrocarbons.

In the middle of the 19th century, the famous “four
color problem”, originating with Francis Guthrie230

(1790-1868), appeared and has continued to chal-
lenge mathematicians for over 150 years. Another
challenging problem in which a path is sought that
visits every vertex of a graph was put forth by W. R.
Hamilton.230,932,933 This difficult problem, also known
as the “problem of a traveling salesman”, requires
finding a cyclic route which will allow a salesperson
to visit every city on his tour and return to the
starting points without visiting the same place more
than once.

The first book on graph theory appeared exactly
on the occasion of 200 years of graph theory. It was
written in German by the Hungarian mathematician
König232 (who committed a suicide in 1943 during
World War II). Graph theory has seen great advance-
ment in the second part of 20th century by contribu-
tions from Clude Berge, Oysten Ore, R. C. Read (who
considered mathematical nomenclature for alkanes),
William Tutte, H. S. M. Coxeter, Paul Erdös, and
others. A standard introductory textbook is that by
Frank Harary,102 but there are numerous excellent
books on graph theory, a short list of which can be
found in the book on graph theory and applications
by Bondy and Murty.934 In one of appendices of this
book, one can also find a collection of “unsolved
problems” of graph theory of varying difficulty, which
includes a number of conjectures not yet proven.

It is of interest to mention that the mathematician
Fajtlowicz935-943 developed a computer program, “Graf-
fiti”, which makes conjectures. After conjectures are
made by the computer, the conjectures are announced
and mathematicians are invited to prove or disprove
them. Many have been proved, some disproved, and
many still remain open. At first sight a reader may
get an impression that we have drifted far from
chemistry and in particular topics that are relevant
for characterization of aromaticity. However, it may
be of interest to chemists to learn that numerous
conjectures that the “Graffiti” program proposed
relate to concepts that originated within the litera-
ture on chemical graph theory. For example, several
conjectures relate to various mathematical properties
of the so-called topological indices. Conjectures were
also proposed by “Graffiti” that concern fullerenes,
which led to a paper by Fowler944 on fullerene graphs
with more negative than positive eigenvalues. Ac-
cording to Fowler, such fullerenes represent “the
exceptions that prove the rule of electron deficiency”.
This work once again illustrates advantages to
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chemistry when it broadens its interests into inter-
disciplinary areas. In contrast to quantum chemistry,
in which very few mathematicians were absorbed,
chemical graph theory is more fortunate to have
attracted a larger pool of mathematicians (T. Pisan-
ski, B. Mohar, S. Klavžar, J. Žerovnik, V. Batagelj,
and M. Petkovšek from Slovenia; D. Cvetković from
Serbia; A. Kerber, R. Laue, P. Sachs, P. E. John, J.
V. Knop, G. Brinkmann, and O. D. Friedrichs from
Germany; A. Dobrynin and V. A. Skorobogatov from
Russia; D. Veljan, D. Svrtan, and T. Došljić from
Croatia; I. Tomescu and S. Marcus from Rumania;
H. S. M. Coxeter, R. C. Read, T. Lee, P. Hansen, and
G. Caporossi from Canada; K.-T. Fang, W. C. Shiu,
and P. C. B. Lan (Hong Kong), X. Guo, Y. Liu, F.
Zhang, H. Li, and W. He, P-a He and H. Zheng from
China; O. Araujo and J. Rada from Venezuela; D. B.
Redmond, from Ireland; A. J. Guttmann and C. D.
Godsil from Australia; C. Hervas from Spain; H.
Fripertinger from Austria; E. K. Lloyd from England;
L. V. Quintas, J. Malkevitch, F. Harary, P. Slater,
M. Lewinter, S. Fajtlowicz, R. Graham, D. M. Ber-
man, and K. W. Holliday from the United States, to
mention few).

B. Graph Theory in Chemistry
The first chemical problem considered by graph

theory was enumeration of isomers by Flavitskii26,27

in 1874, the same year that stereochemistry was
born. Cayley and Silvester, both mathematicians,
made important early contributions, Cayley by ex-
tending enumeration of chemically interesting graphs
and Silvester by recognizing the role of graphs for
molecular modeling. Enumeration of isomers was
made simpler by a theorem of Polya’s (another
mathematician!) published in 1937.372 For a while,
there was no activity in application of graph theory
to chemistry. Sporadically, publications would appear
and consider some aspects of chemical graph theory.
Thus, in 1940, Balandin945 in the USSR considered
the use of matrices for characterization of structure-
property relationship.

The Hückel molecular orbital model, which was
developed after the pioneering work of Hückel on the
structure of benzene was expanding without being
recognized by most people at the time, could equally
be referred to as a graph theoretical model. Few
theoreticians at the time, e.g., Ruedenberg,171 Heil-
bronner,830 Günthard and Primas,475 Marcus,864 and
Schmidtke,946 were well aware of graph theory and
its role in chemistry. Similarly, the early develop-
ment of the valence bond method was typical of the
lack of appreciation of the role of graph theory in
chemistry, despite the more apparent link between
VB and graph theory.

A revival of interest in chemical graph theory was
noticed in the mid-1960s, when several problems of
interest of chemistry that reflect the methodology of
graph theory appeared. One was a renewed interest
in HMO theory,947 especially as applied to larger
systems, and another was the study of isomeriza-
tions,505 but the most important was the “prepara-
tion” of chemical structures for computer manipula-
tions. Balaban was the first to construct graphs

representing degenerate rearrangements of “flexible”
structures,505 and continued to expand chemical
graph theory in many directions. The Journal of
Mathematical Chemistry, started by D. H. Rouvray
in 1987, was an early messenger of theoretical results
in chemical graph theory, while the Journal of
Chemical Information and Computer Science, under
the editorship of W. A. Milne for the past 10 years,
became the major reporter on applications of chemi-
cal graph theory, particularly on chemical documen-
tation, canonical labeling of molecules, computer
searches of large data files, computer manipulation
of molecular structures, mathematical modeling of
structure-property-activity studies, mathematical
modeling of proteins, and recently mathematical
modeling of DNA and mathematical modeling of
proteomics maps. The first and the only single-author
book on Chemical Graph Theory, by Trinajstić,70

appeared almost 20 years ago (in 1983 and revised
edition in 1992).

Chemical graph theory has also an abundance of
unsolved problems that challenge researchers. Not
all the problems may be equally important for
chemistry, but all require some imagination, some
ingenuity, and some novelty, and all present consid-
erable a challenge to novices as well as to old-timers.
For a brief review on unsolved problems of chemical
graph theory, consult articles by Randić et al.948 and
Balaban.949

C. Further Readings

Although we covered a large territory and reported
on various aspects of aromaticity, citing numerous
papers, including some of peripheral relevance, it has
to be recognized that we could not give due attention
to every worthy contribution in this area of theoreti-
cal chemistry. Thus, we have collected a brief list of
additional references that could be consulted for more
information on the topics covered in this review. In
order to assist interested readers, papers have been
grouped according to topic:

Characteristic polynomial and related, refs 950-
957; graph spectra and related, refs 958-960; auto-
morphism, refs 961-966; enumerations of Kekulé
structures, refs 967, 968; enumeration of walks and
related, ref 969; more on Kekulé structures, refs 970-
977; Pauling bond orders, refs 978-980; more on Clar
structures, refs 981-990; aromaticity, refs 991-994;
and fullerenes, refs 995, 996.

D. Personal Note

I would like to end this brief overview of graph
theory and its use in chemistry with a personal
comment on my own work. A stimulus for this came
after having a look at a list of the 125 most cited
papers published in the Journal of the American
Chemical Society, displayed on the Internet by the
American Chemical Society (http://pubs.acs.org/JACS)
on the occasion of the 125th anniversary of this
journal (2003). Among a sizable list of Nobel Laure-
ates and numerous equally illustrious chemists, I was
pleased to find a paper of mine listed in position 94.
The paper, entitled “On Characterization of Molec-
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ular Branching” (ref 61), considers construction of a
structural invariant, “the branching index”, designed
to parallel numerous physico-chemical properties of
alkanes. The index was later generalized to “higher
order” connectivity indices and valence connectivity
indices that found application in numerous structure-
property-activity studies. In my view a different
paper of mine, entitled “Aromaticity and Conjuga-
tion”, from which this whole review article grew,
published in the Journal of the American Chemical
Society just a year later, should have got meritorious
distinction but it did not; it fell short of qualifying
by some 700 citations.

When Linus Pauling was asked which of his
contributions he considers the most important (and
as we all know he had very many very important
contributions from which to choose), he selected his
work on hybridization as the most important. I take
this opportunity to proclaim my paper on conjugated
circuits as my most important contribution to chem-
istry. The first paper was published in Chemical
Physics Letters in 1976 (ref 51), to be followed the
next year with two full-size papers in Journal of the
American Chemical Society and Tetrahedron (refs 52
and 53, respectively). Despite being available in some
of the best chemistry journals, these contributions
have received apparently limited attention, except
perhaps within the chemical graph theory com-
munity. Nevertheless, the conjugated circuits method
continued to gradually evolve during the past 25
years, to culminate in the recent synthesis of the
notions of aromatic π-sextet of Clar structures with
the idea of innate degree of freedom of Kekulé valence
structures. Besides making it possible to arrive at
quantitative characterization of Clar structures, for
the first time it became possible to extend Clar’s
notion of aromatic π-sextets to the chemistry of non-
benzenoid hydrocarbons and fullerenes.

Conjugated circuits not only have led to an analytic
expression for molecular RE but also can be viewed
as the definition of molecular RE for conjugated
systems. For the first time, one need not define RE
as the difference between the energy of conjugated
polycyclic hydrocarbon and an acyclic standard. In
this sense the concept of conjugated circuits may be
viewed as “primitive”, where I use the attribute as a
complement, in the sense of being of “prime impor-
tance”, fundamental. Thus, “conjugated circuits”
could become a recent addition to the exclusive list
of the most primitive concept of structural chemistry
initiated by the idea of van’t Hoff about tetrahedral
carbon atoms, the idea of the cyclic structure of
benzene of Kekulé, and the idea of spn hybrids of
Pauling.

XLIV. Appendix 3. ErrorssOmissions

Errare humanum est.
Saint Jerome (c. 347-c. 420)

Here we will list errors, misprints, omissions, etc.
that we detected in the literature. Either earlier or
during the preparation of this review, some of these
errors may have been detected by others, and hence
some corrections may have been reported. Neverthe-

less, for those readers who will consult the original
literature cited in this review, it might be convenient
to group all such observations in a single place. The
reference number in the text dictates the order in
which corrections and comments proceed.

(30) Randić, M.; Trinajstić, N. Croat. Chem. Acta
1994, 67, 1-35.

On p 12 near the end of the section is shown a 4 × 4
matrix A-1, but it was labeled as A2. On p 16, where
additivity of the HMO π-energies of benzenoid hy-
drocarbons, discussed by R. A. Marcus (J. Chem.
Phys. 1965, 43, 2643), is discussed, the second row
of set I was shown as anthracene and benzene
instead of tetracene and benzene.

(45) Dewar, M. J. S.; de Llano, C. J. Am. Chem.
Soc. 1969, 91, 789.

The reported RE for pyrene is in error. Instead of
being 2, the corrected value is 2.098 eV, as reported
by M. J. S. Dewar to W. C. Herndon (see footnote to
Table 2 in ref 162.

(48) Pauling, L. The Nature of the Chemical
Bond, 3rd ed.; Cornell University Press:
Ithaca, NY, 1960.

August Kekulé was quoted as a German chemist,
which many thought to be the case at that time.

(49) Clar, E., The Aromatic Sextet; J. Wiley &
Sons: London, 1972.

Hydrocarbon XXXII on p 118 has a missing CdC
bond between the two benzene rings below the empty
ring (indicated by E).

(51) Randić, M. Chem. Phys. Lett. 1976, 38, 68.

The reported numerical value for contributing
conjugated circuit R4, taken to be 0.041 eV, does not
follow as the solution of the equations considered,
which according to Gutman should be 0.140 eV. As
Gutman points out, the error may have been in
transcription. However, since the relative magnitudes
ought to satisfy the inequality Rn > Rn+1, the “exact”
value for R4 is not acceptable. Most likely, inconsis-
tencies are cause by minor inaccuracies of SCF MO
computations, which may not be reliable to the
precision needed to extract R4 from such computa-
tions.

We should add here that Herndon’s approach and
the conjugated circuits model, when restricting at-
tention solely to R1 and R2 contributions, can be made
mathematically equivalent if the same parameters
for R1 and R2 and molecular integrals γ1 and γ2 are
assumed.

(53) Randić, M. Tetrahedron 1977, 33, 1905:

In Table 2, the last listed expression for RE of
ovalene should be (200R1 + 160R2 + 110R3 + 26R4
+ 4R5)/50 (and not “/500”).

(178) Heilbronner, E. Helv. Chim. Acta 1962, 45,
1722.

Matrix element (1,8) of the figure on p 1724 is
omitted in the original paper of Heilbronner [because
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we use different carbon atom labels, it corresponds
in his notation to element (1,6)].

(219) El-Basil, S.; Randić, M. J. Math. Chem.
1987, 1, 281.

Erroneous df was reported for the Kekulé valence
structure shown in Figure 2 of this paper for pyreno-
[4,5-e]pyrene (two fused pyrene units), which was
reported to have df ) 3, but in fact it has df ) 2
(because the structure has only two disjoint conju-
gated circles).

(433) Randić, M. In Valence Bond Theory and
Chemical Structure; Klein, D. J., Trinajstić,
N., Eds.; Elsevier: Amsterdam, 1990; p 469.

Of the five benzenoids shown to have K ) 21, only
four have K ) 21. For the second cata-condensed
benzenoid in fact K ) 31.

(457) Randić, M.; Henderson, L. L.; Stout, R.;
Trinajstić, N. Int. J. Quantum Chem.: Quan-
tum Chem. Symp. 1988, 22, 127.

In Figure 1, in Table 3, and in Table 4, the code
(2,4,2,4) should be replaced by the code (2,5,2,5).

(530) Došljić, T. Croat. Chem. Acta 2002, 75, 881.

On p 882 are listed the first few Catalan numbers.
The C8 was misprinted as 1030 instead of the correct
value, 1430.

(539) Herndon, W. C.; Hosoya, H. Tetrahedron
1984, 40, 3987.

In Figure 2 in the last Clar-type structure, the CC
double bonds in one of the benzene rings are in the
wrong locations.

In addition, these author claimed that every Clar
structure which forms the basis for VB calculations
corresponds to a maximum independent set of a Clar
graph, which however is not the case, as outlined in
ref 793. As a consequence, enumerations of Clar
structures by El-Basil et al.219,986,997-999 are in error.
For correct values see ref 793.

(569) Randić, M.; Trinajstić, N. J. Am. Chem.
Soc. 1984, 106, 4428.

In Figure 2, conjugated circuit R4 is drawn incor-
rectly (as a circuit involving 15 carbons). Correct R4
circuits should involve four benzene rings on the
molecular periphery.

(752) Clar, E.; McAndrew, B. A. Tetrahedron
1972, 28, 1137.

The formula of 2,3:4,5:8,9:10,11-tetrabenzoperylene
in the chart on p 1138 and in Figure 1 on p 1139 are
missing two CC double bonds which are exocyclic to
the central ring of perylene.

XLV. Appendix 4. ErrorssPrevention
This paper, whose intent is stated in its title,
gives wrong solution to trivial problems. The
basic error, however, is not new.

C. Truesdell1000

Errors in scientific papers are not uncommon even
though co-authors, colleagues, and reviewers screen
many papers. It is not uncommon to spot minor
errors by authors upon the first look at a paper as it
appears in press. Referees tend to focus attention to
major aspects of scientific papers, often from very
personal points of view, which often results in non-
constructive comments that have little value to
authors, particularly in preventing future mistakes.
A good illustration of such a lofty report is that of a
well-known German chemist, Hermann Kolbe (1918-
1984), on a paper by equally distinguished French
chemist, Marcellin Bertholet (1827-1907):

Paper has new and true things, but what is new
is not true, and what is true is not new.

It is not so important whether this particular report
itself is true or not, but it shows the limitations of
the system of anonymous referees who often end up
promoting their own agenda rather than assisting
authors and editors to improve the quality of scien-
tific papers. For years I thought that the above is the
worst possible evaluation of one’s work; however, I
came across a quotation from The Mathematics
Reviews (by Clifford Truesdell listed above) which
appears even worse, because, according to the re-
viewer, the author considered trivial problems, gave
a wrong solution, and even the errors were not
original!

Be that as it may, we can still try to do something
to reduce the errors that tend to be repetitious. The
occurrence of such errors continues because the
propagators are not aware that they are in error. This
is the case with the continuing misuse of the “circle”
notation of aromatic π-sextet in representing ben-
zenoid hydrocarbons, mentioned at the beginning of
this review article. One of the reasons that this
malpractice continues may be the awkward format
of the correct notation. However, a widespread mis-
use of the notation by so many organic chemists will
not make the wrong notation right. Something ought
to be done to change the situation.

In Figure 131 we have illustrated the misrepre-
sentation of smaller benzenoid hydrocarbons by
drawing circles in all fused benzene rings. The

Figure 131. Misuse of the “circle” notation illustrated on
several smaller benzenoids (top) and a suggested remedy:
use of the Greek letter π for rings involving π-electrons
instead of the circle.
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widespread use of this erroneous notation cannot be
attributed solely to mischievous behavior of so many
chemists, but rather points to a lack of a suitable
replacement notation. The correct drawing of the
benzenoids shown in Figure 131 is shown in Figure
132. Because the correct representation of such
molecules may require some acquaintance with Clar’s
ideas on the aromatic π-sextet, which go beyond the
issue of notation, many find an easy solution by
maintaining the incorrect “circle” notation, because
there is no suitable alternative. In Figure 133 we
illustrate the “missing” suitable alternative, which
is as simple as is the incorrect “circle” notation, yet
does not contradict any existing molecular models.
Here, each fused ring, rather than being represented
by an inscribed circle, is simply indicated by an
inscribed Greek letter π, as shown in Figure 133.

Numerical Kekulé Valence Structures. Kekulé
valence structures, like Clar’s valence structures,
may be viewed as “geometrical” formulas because
they are drawn. Similarly, the novel notation for
benzenoid hydrocarbons using an inscribed Greek π
represents a pictorial, qualitative, non-numerical
representation of such molecules. However, well-
designed or selected notation may have advantages
that initially one did not anticipate. This has been
the case with the Leibniz notation for derivatives in
mathematics, and with graphical codes of configura-
tion of n-alkanes in structural chemistry.1001 We will
show now that the just introduced qualitative π-nota-

tion of fused benzene rings can be generalized into
quantitative characterization of Kekulé valence struc-
tures as well as benzenoid hydrocarbons in general.
We may refer to the novel quantitative representa-
tions as “numerical Kekulé valence structures” and
“numerical molecular formulas of benzenoids”, re-
spectively, in contrast to more familiar geometrical
Kekulé valence structures and geometrical molecular
formulas of benzenoids.1002

We start with the smallest benzenoids, naphtha-
lene, anthracene, and phenanthrene, illustrated in
Figure 134, where we inscribed some numerals
within individual rings of each Kekulé valence for-
mula. The numbers inscribed have a simple struc-
tural meaning: they count π-electrons belonging to
a ring. To arrive at the count of π-electrons for each
ring, we divide electrons belonging to a CC double
bond common to two rings equally, one electron to
each ring. Thus, the first Kekulé formula of naph-
thalene, which contains three CC double bonds, has
six π-electrons, and the adjacent ring, with two CC
double bonds, has four π-electrons. The two rings
together have 10 π-electrons, which is the number
of π-electrons of naphthalene. However, in the case
of the central Kekulé structure of naphthalene, each
ring is associated with five π-electrons, because the
two rings share a common central CC bond. Again,
the total number of π-electrons is 10, as it should be.
To obtain the numerical molecular structure of
naphthalene, we take the average count of π-elec-
trons for each ring over all Kekulé valence structures.

As we can see from Figure 135, where we have
listed the nine numerical Kekulé valence structures
of benzo[a]pyrene, the numbers in each structure
represent a partitioning of all π-electrons to indi-
vidual rings for each Kekulé valence structure. In
Figure 136 for a collection of smaller benzenoids we
show the corresponding numerical molecular formu-
las obtained by averaging ring contributions of all
Kekulé valence structures. The numerical formulas
shown in Figure 136 can viewed as alternative local
aromaticity ring indices. A comparison with Figure
96, in which we had simple graph theoretical ring
indices, shows considerable parallelism between the
two approaches. There are also significant (though
minor) differences between the two approaches. As
can be seen already in the case of anthracene, the
central and the peripheral rings now have slightly
different ring indices. Apparently, terminal rings
have the largest ring value, paralleling in this way

Figure 132. Correct notation for the benzenoids shown
in Figure 131, as dictated by Clar’s model of aromatic
π-sextets.

Figure 133. Proposed alternative simple notation for
benzenoids not contradicting Clar’s model.

Figure 134. Kekulé structures of naphthalene, an-
thracene, and phenanthrene, showing the count of π-elec-
trons involved in each ring.
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characterization of rings on the basis of ring RE. If
we add all ring indices for benzenoids in Figure 136
and divide the sum by K, we obtain the number of
π-electrons in a benzenoid. If we add all ring indices
in Figure 96 and divide it by K, we obtain the number
of fused rings.

One can confine the count of π-electrons by con-
sidering only Kekulé valence structures of the maxi-
mal degree of freedom. In this case there is a
redistribution of π-electrons between various rings,
because unfavorable Kekulé valence structures were
not considered. In Figure 137 we show the π-electron
counts for individual rings for the same collection of

benzenoids shown in Figure 136. As expected, ter-
minal rings and rings which are the sites of π-aro-
matic sextets have slightly increased their benzene
character, at the expense of the “empty” rings of Clar
structures.

In Figure 138 we have summarized the results of
the short critical review on misuse of “circle” notation
and use of the count of π-electrons on benzo[e]pyrene.
In the top part of Figure 138 we show the incorrect
qualitative structural formula depicting misuse of
π-aromatic sextet notation, and the novel correct
qualitative structural formula with inscribed π-elec-
trons in all rings. In the lower part of Figure 138 we
give the average count of ring π-electrons based on
all Kekulé valence structures, and based on the
subset of Kekulé valence structures involved in the
Clar valence structure (i.e., Kekulé valence structures
of the maximal df).

Apparently, novel quantitative Kekulé structures
better describe local properties of benzenoid hydro-
carbons than the simple local graph theoretical
indices. In the first case one incorporates contribu-
tions from CC bonds in all conjugated circuits, but
the in latter one considers only CC bonds within a
single benzene ring. Briefly, the novel quantitative
notation for fused benzene rings has introduced novel
ring indices for benzenoid hydrocarbons. Hence, by
coming to the end of this review, we may be at the
beginning of a novel alternative characterization of
benzenoid and non-benzenoid hydrocarbons. With the
new quantitative Kekulé valence structures, the focus
has shifted to the distributions of π-electrons among

Figure 135. Numerical Kekulé valence structures of
benzo[a]pyrene.

Figure 136. Partitioning of π-electrons to individual rings
for smaller benzenoid hydrocarbons based on all Kekulé
valence structures.

Figure 137. Partitioning of π-electrons to individual rings
in smaller benzenoid hydrocarbons based on Kekulé va-
lence structures of maximal df.
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different rings rather than among different conju-
gated circuits.

We may add that the partition of π-electrons to
individual rings can be obtained by summing the
Pauling bond orders for all CC bonds of a ring but
taking only half of the value in the case of CC bonds
common to two rings. The final sum has to be
multiplied by 2, because each CdC has two π-elec-
trons.1003

XLVI. Note Added in Proof

A. Clar Structures of C60

In the discussion the Clar structures of fullerene
C60, I neglected to mention two papers in which these
structures1004,1005 have been discussed. S. El-Basil1004

was the first to report on the five Clar structures of
buckminsterfullerene, while mathematicians W. C.
Shiu and P. C. B. Lam (from Hong Kong) and H.
Zhang (from P. R. China) elaborated on the corre-
sponding sextet polynomials of buckminster-
fullerene.1005 I am grateful to Professor W. C. Hern-
don (El Paso, TX), who drew my attention to these
recent papers on Clar structures of fullerenes.

B. Benzenoid [10]Cyclophenacene Belt
Recently, Nakamura and co-workers1006 reported

the first example of a cylindrical benzenoid fragment
embedded in a suitably substituted buckminster-
fullerene molecule. They added five methyl groups
to five carbon atoms adjacent to one of pentagonal
faces of C60, and five phenyl groups to five carbon
atoms adjacent to the antipodal pentagonal face,
while both pentagonal faces have one carbon hydro-
genated. As a result, the conjugation of C60 was
effectively reduced to a belt of 10 zigzag fused
benzene rings. Thus, one obtains an equatorial band
of 40 π-electrons, with the π-electron system embed-
ded but not conjugated to the remaining parts of the
molecule. Cylindrical benzenoid systems are present
in nanotubes and as portions of fullerene toroidal
structures, but this is the smallest such constellation
of benzene rings, and thus is of considerable theoreti-
cal interest. First to consider macrocyclic conjugation
of cylindrically fused benzene rings, referred to as
circumpoliacenes, were Ege and Vogler almost 30
years ago.1007 Their hypothetical structures, however,
were linearly fused cyclic structures, the fragments
of which were naphthalene, anthracene, tetracene,
etc. In contrast, the benzenoid belt of Nakamura
involves zigzag fused benzene rings, the fragments
of which are phenanthrene, chrysene, picene, ful-
minene, etc. Balaban, in fact, considered zigzag fused
cycloacenes (and their Möbius counterparts) in a
paper on open problems in the area of condensed
polycyclic benzenoids.1008

The numbers of Kekulé valence structures for
phenanthrene, chrysene, picene, and fulminene, 5,
8, 13, and 21, respectively, are members of the well-
known Fibonacci sequence, in which each member
is given as the sum of the proceeding two members
in the sequence. Hence, the zigzag system having 10
fused benzene rings would have 144 Kekulé valence
structures. In contrast, [10]cyclophenacene is ex-
pected to have fewer Kekulé balance structures
because the bond types of the CC bond that is
common to the first and the last ring when 10 rings
are connected into a cylindrical shape ought to be
compatible. Recently, Lukovits et al.1009 reported on
the number of Kekulé valence structures for ben-
zenoid belts of different lengths and widths. It is not
difficult to establish that, for [10]cyclophenacene, K
) 125, which interestingly is exactly 100 times less
than K for buckminsterfullerene.155 With 125 Kekulé
structures, [10]cyclophenacene is considered a rela-
tively small benzenoid system. To obtain the count
of conjugated circuits instead of examining the
individual Kekulé valence structures, one considers
contributions from a single benzene ring, all rings
being symmetry equivalent. One then obtains1010 the
expression for molecular RE for [10]cyclophenacene:

if we ignore contributions from 4n conjugated circuits,
the smallest of which has 20 and the largest 40
π-electrons. Assuming R1 ) 0.869 eV, R2 ) 0.247 eV,
and R3 ) 0.100 eV, we obtain for a numerical value
of 5.661 eV for RE of [10]cyclophenacene and RE per

Figure 138. Incorrect qualitative structure of benzo[e]-
pyrene, correct qualitative structure of benzo[e]pyrene
compared to correct quantitative structures of benzo[e]-
pyrene based on all Kekulé valence structures, and correct
quantitative structures based on valence structure of the
maximal degree of freedom.

RE ) (680R1 + 420R2 + 130R3)/125
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electron, REPE ) 0.1415 eV. This value is typical of
REPE values of smaller benzenoid compounds; hence,
[10]cyclophenacene shows considerable similarity
with planar benzenoid compounds of similar size. The
values of the graph theoretical parameters R1-R3
will change somewhat with a better estimate for the
partial loss of RE due to the spherical curvature of
buckminsterfullerene. However, such improvements
will not dramatically change the overall picture,
because, as Herndon pointed out,1011 many of the
smaller benzenoids on which the estimates of the
parameters R1-R3 were based themselves are not
strictly planar. We may add that [10]cyclophenacene
has two symmetry-equivalent Clar structures, each
having five aromatic π-sextets and five benzene rings
with one CC double bond.

C. Historical Remark on Clar π-Sextets

There is an earlier paper on aromatic sextets that
appeared before the paper of Armit and Robinson,
written by E. C. Crocker.1012 Crocker’s paper was not
fully overlooked, as it was mentioned in the brief
history of aromaticity published in the Journal of
Chemical Education.1013 Although there is no doubt
that Crocker recognized the significance of the π-ar-
omatic sextet, he was mainly concerned with aro-
matic rings having six π-electrons, while Armit and
Robinson were considering polycyclic aromatic sys-
tems, where the number of p-electrons can vary
considerably. I would like to thank to Professor
Schleyer for drawing my attention to the above
papers that were important for the development of
the notion of aromatic π-sextets.

D. More Support for Clar’s π-Aromatic Sextets

We started this review by pointing out three
independent supports for Clar’s aromatic π-sextet
model of benzenoid hydrocarbons: (1) calculation of
the ring RE of benzenoids based on SCF MO calcula-
tions; (2) calculation of molecular RE using the
“preferred” Kekulé valence structures; and (3) ex-
perimental evidence of stable bent [n]phenalenes. By
the time we ended this review, additional strong and
independent theoretical evidence that supports Clar’s
notion of aromatic π-sextets emerged. This time,
rather than relying of 30-year-old semi-empirical
quantum chemical calculations, the results were
based on ab initio Gaussian computations. Schleyer
and collaborators1014 calculated nucleus-independent
chemical shifts (NICS) for individual aromatic rings
of a dozen benzenoid hydrocarbons, including several
larger systems. In Figure 139 we show a selection of
the benzenoids for which Schleyer and collaborators
reported NICS values, and in Table 56 are listed their
reported NICS values for various benzene rings. In
the adjacent column we show the graph theoretical
ring indices for the same rings. A qualitative paral-
lelism between the NICS values and the graph
theoretical ring indices can be observed. The NICS
values represent additional strong theoretical sup-
port for Clar’s picture of aromatic π-sextets. The
computed ring values of NICS correspond to Clar’s
picture of benzenoid compounds and thus offer an

independent (and up-to-date) support for the π-sextet
model of Clar. It is interesting that only the four fully
polybenzenoid hydrocarbons (having only π-sextets
and empty rings), C42H18 (hexabenzocoronene), C114H30,
C186H42, and C222H42, show the extreme NICS values,
while compounds having migrating π-sextets show
for several rings intermediate NICS values. In the
case of the fully benzenoid hydrocarbons having only
aromatic π-sextet rings and “empty” rings, we see
that the largest NICS values belong to the central
rings, while the largest graph theoretical indices are
found in peripheral rings. The relationship between
the NICS values and GT ring indices clearly need to
be further investigated.1015 I am indebted to Professor
Schleyer for sending me his results prior to their
publication.
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(9) Klein, D. J.; Trinajstić, N. Foundation of Conjugated-Circuits

Models. Pure Appl. Chem. 1989, 61, 2107-306.
(10) Klein, D. J. Valence Bond Theory for Conjugated Hydrocarbons.

Pure Appl. Chem. 1983, 5, 299-306.
(11) Samuel Johnson (1709-1784) was a distinguished English

lexicographer, essayist, critic, and poet.
(12) Boys, S. F. Proc. R. Soc. 1950, A200, 542.
(13) Boys, S. F.; Cook, G. B. Rev. Mod. Phys. 1960, 32, 285.
(14) Hund, F. Z. Phys. 1926, 36, 657.
(15) Hund, F. Z. Phys. 1927, 37, 742.
(16) Hund, F. Z. Phys. 1927, 40, 742.
(17) Hund, F. Z. Phys. 1927, 42, 93.
(18) Mulliken, R. Phys. Rev. 1925, 26, 561.
(19) Mulliken, R. Phys. Rev. 1927, 29, 648.
(20) Mulliken, R. Phys. Rev. 1928, 32, 186.
(21) Mulliken, R. Phys. Rev. 1928, 32, 761.
(22) Bloch, F. Z. Phys. 1929, 52, 555.
(23) Bloch, F. Z. Phys. 1930, 61, 206.
(24) Hotelling, H. J. Educ. Psychol. 1933, 24, 417 & 489.
(25) Hauptman, H. A.; Karle, J. Solution of the Phase Problem. I.

The Centrosymmetric Crystal; American Crystallographic As-
sociation: New York, 1953.

(26) Flavitskii, F. J. Russ. Chem. Soc. 1871, 160.
(27) Flavitskii, F. Ber. Deutsch. Chem. Ges. 1875, 8, 267.
(28) Cayley, A. Philos. Mag. 1857, 13, 172.
(29) Cayley, A. Ber. Deutsch. Chem. Ges. 1875, 8, 1056.
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295.
(221) Klein, D. J. Int. J. Quantum Chem. 1979, 13 S, 293.
(222) Hansen, P.; Zheng, M. MATCH 1994, 31, 111.
(223) Sylvester, J. J. Chemistry and Algebra. Nature 1877-1878,

XVII, 284 and 309.
(224) Ore, O. Graphs and Their Uses; Random House: New York,

1963.
(225) Wilson, J. R. Introduction to Graph Theory; Oliver and Boyd:

Edinburgh, 1972.
(226) Ore, O. Theory of Graphs; American Mathematical Society:

Providence, RI, 1962.
(227) Bondy, J. A.; Murty, U. S. R. Graph Theory with Applications;

MacMillan Press, Ltd.: London, 1976.
(228) Tutte, W. T. Graph Theory; Addison-Wesley: Reading, MA, 1984.
(229) For a summary on graph theoretical terminology, see: Essam,

J. W.; Fisher, M. E. Rev. Mod. Phys. 1970, 42, 271.
(230) Biggs, N.; Lloyd, E. K.; Wilson, R. J. Graph Theory 1736-1936;

Clarendon Press: Oxford, 1976.
(231) Euler, L. Solutio Problematic ad Geometriam Situs Pertinantis.

Academimae Petropolitanae 1736, 8, 128-140.
(232) König, D. Einfürung in die Theorie der Endlichen und Unendli-

ched Graphen; Chelsea: New York, 1950 (reprinted under the
act of the war without permission).
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submitted.
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(323) Randić, M.; Wilkins, C. L. J. Phys. Chem. 1979, 83, 1525.
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(433) Randić, M. In Valence Bond Theory and Chemical Structure;
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(528) Randić, M.; Kopecky, K. J.; Baker, B. J. Math. Chem. 1993, 14,

243.
(529) Ohkami, N.; Hosoya, H. Bull. Chem. Soc. Jpn 1979, 52, 1624.
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held in Berlin City Hall in 1890.

(559) Jiang, Y.; Tang, A.; Hoffmann, R. Theor. Chim. Acta 1984, 66,
183.

(560) Bartell, L. S. J. Phys. Chem. 1963, 67, 1865.
(561) Aida, M.; Hosoya, H. Tetrahedron 1980, 36, 1317.
(562) Gutman, I. Rep. Mol. Theory 1990, 1, 115.
(563) Herndon, W. C. J. Am. Chem. Soc. 1982, 104, 3541.
(564) Hess, B. A.; Schaad, L. J. Pure Appl. Chem. 1980, 52, 1317.
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(588) Randić, M. J. Chem. Phys. 1961, 34, 693.
(589) England, W.; Ruedenberg, K. Theor. Chim. Acta 1971, 22, 196.
(590) England, W.; Salmon, L. S.; Ruedenberg, K. Fortschr. Chem.

Forsch. 1971, 23, 31.
(591) England, W.; Ruedenberg, K. J. Am. Chem. Soc. 1973, 95, 8769.
(592) Paniagua, J. C.; Moyano, A. Croat. Chem. Acta 1983, 56, 499.
(593) Edminston, C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35, 457.
(594) Edminston, C.; Ruedenberg, K. J. Chem. Phys. 1965, 436, 97.
(595) Graovac, A.; Gutman, I.; Randić, M.; Trinajstić, N. J. Am. Chem.
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113.
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(709) Randić, M. J. Mol. Struct. (THEOCHEM) 1991, 229, 139.
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1991, 2, 183.
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(897) Guo, X.; Randić, M. J. Chem. Inf. Comput. Sci. 1994, 34, 339.
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57, 339.
(986) El-Basil, S. Theor. Chim. Acta 1986, 70, 53.
(987) El-Basil, S. Croat. Chem. Acta 1984, 57, 47.
(988) Zhang, M.; Chen, R. Graphs Combinatorics 1985, 1, 295.
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